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Abstract

This paper develops a model where large financial intermediaries subject to
systemic runs internalize the effect of their leverage on aggregate risk, returns
and asset prices. Near the steady-state, they restrict leverage to avoid the risk
of a run which gives rise to an accelerator effect. For large adverse shocks, the
system enters a zone with high leverage and possibly runs. The length of time
the system remains in this zone depends on the degree of concentration through
a franchise value, price-drop and recapitalization channels. The speed of entry
of new banks after a collapse has a stabilizing effect.
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1 Introduction

Does the degree of competition among financial intermediaries increase instability?
Compared to the U.S. banking system, the stability of the Canadian system whose
three largest banks total three fourth of total bank asset is often cited as the example
that an oligopolistic banking system enhances financial stability. This paper revisits
this question in the context of the shadow banking system.1 As the Great Recession
has shown, it is much more subject to the risk of systemic runs than traditional
banks, for three main reasons: i) shadow banks rely heavily on wholesale short-term
funding (Pozsar et al., 2010), ii) their assets are continuously and freely traded
on financial markets which makes shadow banks’ assets more liquid but also their
value more volatile, and iii) they operate in a different regulatory framework and are
not covered by public deposit insurance. How does the level of competition among
unregulated financial intermediaries shape the likelihood of systemic runs and what
are the implications for macroeconomic stability and welfare?

The competition vs. stability debate has a long history. Building on the traditional
bank run framework (Diamond and Dybvig, 1983; Morris and Shin, 1998), Vives
(2016) studies the role of non-competitive profits in increasing the ability of banks
to repay running depositors ex post - which share some similarities with what I call
the recapitalization channel - and Matutes and Vives (2000) study the role of non-
competitive profits in incentivizing intermediaries to lower their risk exposure ex ante
to protect their future profits, what is known as the charter or franchise value channel.
In addition, the fact that lower competition leads to higher franchise value also implies
cheaper cost of funding, which incentivizes risk-taking. Finally, it has also been shown
that lower competition could lead to more risk-taking through the adverse selection of
borrowers implied by higher loan rate (Nicolo and Boyd, 2003; Corbae and D’Erasmo,
2014). This mechanism relies on information frictions from which I abstract. Carletti
and Hartmann (2003) and Vives (2016) provide an overview of the literature. These
results have been obtained in static and partial equilibrium frameworks.

This paper revisits the competition-stability debate in a dynamic and general
equilibrium framework. I build a stylized macroeconomic stochastic general equilibrium
model that features atomistic households and a finite number of large leveraged financial

1The unregulated financial intermediaries total more than a third of total intermediation in the
US (Board, 2017). Herfindhal indexes range from .05 to .5 across different segments of financial
markets, corresponding to an average of 20 to 2 actors (Cetorelli et al., 2007).
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intermediaries ("banks" hereafter) investing in a freely traded asset.2 I assume that
households are less efficient than banks at managing capital. At any instant, households
can decide to withdraw their deposits, which makes the system subject to run in some
part of the state-space. Multiple equilibria exist whenever otherwise solvent banks are
insolvent at the run price. The run price is a macroeconomic endogenous object, that
depends on how inefficient households are at managing capital and how much of the
capital stock they have to absorb.

I depart from the macrofinance literature in two important ways. First, in contrast
with a framework in which banks are atomistic, large banks internalize their impact
on the aggregate likelihood of a run, asset prices and excess returns when choosing
their capital investment, the composition of their liability, and their exposure to risk.3

Second, I do not assume that banks have to abide by a collateral constraint originating
in a moral hazard friction, as in Mendoza (2010), Gertler and Kiyotaki (2015) or
Gertler et al. (2017) (hereafter GK), that there is a fixed amount of equity and an
occasionally binding constraint as in Brunnermeier and Sannikov (2014) (hereafter
BS), or that banks face a value-at-risk constraint as in Adrian and Shin (2014) and
Coimbra and Rey (2017). Like these papers, I assume that there are frictions in the
issuance of equity. Despite the absence of constraints on leverage, banks’ net worth
matter for the size of their investment because banks understand that a higher leverage
increases the exposure of the financial system to runs. While the main focus of the
literature has been on how risk builds up over time, I focus on the time of crisis itself
and the recovery that follows, which is when runs happen.

The first contribution is the analysis of the equilibrium path of the economy. In
the aftermath of an adverse aggregate productivity shock, banks experience a drop
in net worth. The economy lands in the run zone where banks choose to take on
high leverage, by investing in the interior solution of the Cournot game and where
runs might happen with positive probability. In the run zone, banks restrict dividend
payments. After finite time, banks have accumulated enough net worth and the system
enters the safe zone. In the safe zone, banks optimally choose to restrict their level of

2It is a model of an unregulated or shadow banking system. "Banks" should be understood as
shadow banks. In an extension, I analyze a model of a dual banking system in which regulated and
unregulated banks co-exist.

3This paper relates to a recent literature that investigates the stability implications of departures
from the price-taking assumption in general equilibrium (Dávila and Walther, 2020; Eisenbach and
Phelan, 2020; Neuhann and Sockin, 2019).
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investment to a multiplier of their net worth to avoid the risk of runs. In this zone,
the system is characterized by a positive relationship between banks’ net worth, asset
prices and capital investment. The novelty is that leverage is a function of the drop in
prices should a run occur: the larger the potential drop, the smaller the leverage. In
this zone, banks continue to save until they reach the level of net worth that allows
them to invest at the interior solution of the Cournot game without taking the risk of
a systemic run. The endogenous amplification of the initial adverse macroeconomic
shock is therefore of a very different nature in the run zone where it comes from the
possibility of a run, and in the safe zone, where it comes from the traditional financial
accelerator.

The second contribution is to shed light on the mechanisms through which con-
centration as well as the speed at which new banks enter after a systemic run shape
stability. I highlight three channels through which the level of competition shapes
stability. Firstly the franchise value channel, already present in the older static and
partial equilibrium literature, makes large firms less willing to take on the risk of runs
because they have more to lose from liquidation. Secondly, the price-drop channel, the
most novel of all, is the focus of the next paragraph and will also influence the time
spent in the run zone. Thirdly the recapitalization channel makes a more concentrated
market more stable by increasing the speed at which they can accumulate net worth
and escape the zone in which runs may happen. Finally, the speed of entry also
influences the stability of the system: the faster the entry of new banks after a run,
the less likely a run happens ex ante, what I label the entry channel. In the limit
where entry happens infinitely fast, there is no run in equilibrium. This is because
the expectation of new entrants raises the run price to the point that eliminates the
possibility of a run.

The price-drop channel makes more concentrated systems safer by decreasing the
size of the drop in asset prices when a run occurs. More competitive financial systems
are more efficient: the size of intermediation is larger, the gap between the returns on
capital and on deposits is lower and asset prices are higher. But this also implies a
larger drop in asset prices when a systemic run occurs because more capital has to
be liquidated and absorbed by households, who are less efficient at managing capital.
The larger the potential drop in prices, the smaller the leverage banks can afford if
they want to avoid the risk of a run. This gives them incentives to play a highly
leveraged investment strategy rather than engaging in a safe one, thereby increasing
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the likelihood of a run. This finding is in sharp contrast with what happens when runs
are not systemic but on individual banks, which makes this channel maybe surprising
and controversial.4

The net worth dynamics interact with the price-drop channel in three ways that
matter for stability. First, financial stability depends on both the size of the run
zone, which depends crucially on the size of the price-drop, and the speed at which
banks travel through it, which depends on the recapitalization channel. Second,
asset prices depend on the path of banks net worth going forward. An important
implication is that in a highly competitive environment, where the accumulation of
net worth is relatively slow, the expectation that banks will coordinate on a safe
equilibrium with low leverage and high output losses in the future depresses asset
prices in the present, which makes the safe strategy relatively more attractive. The
recapitalization channel mitigates the price-drop channel. Third, the stabilizing effects
of low competition are mitigated by the net worth accumulation behavior of banks
in the medium-run. After a long period without adverse shocks, banks operating in
a concentrated sector do not have as much net worth on aggregate relative to their
assets compared to banks in a more competitive sector because they understand that
the drop in asset prices is also lower, should a run occur. This makes the system
vulnerable to adverse exogenous shocks. This paradox of safety echoes the paradox of
volatility in Brunnermeier and Sannikov (2014) where low fundamental volatility may
actually lead to high endogenous volatility.

Finally, I extend the model to a framework where shadow and traditional banks
coexist.5 I analyze the implications for stability of competition and macroprudential
policies affecting the traditional banking sector. Even if regulated banks are insulated
from the risk of runs thanks to the deposit insurance scheme and their access to the
lender of last resort, changes in the concentration of the regulated banking system or in
the macro-prudential policies affecting them have implications for stability because they
affect the shadow banking system. Increasing concentration in the regulated sector has
a positive effect on stability through the franchise value and recapitalization channels
but a negative effect through the price-drop effect, by decreasing the absorption
capacity of assets by the regulated banking system, the net effect being ambiguous.

4When runs are on individual banks, the failure of large institutions imply large price-drops which
impair the balance-sheet of surviving banks paving the way for contagion. But this Too-Big-To-Fail
argument doesn’t apply in the case of systemic runs.

5This analysis can be found in appendix D.
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Tighter capital requirements on regulated banks have in general a stabilizing effect
because regulated banks are better capitalized which implies that they have a higher
absorption capacity of assets should shadow banks experience a run and liquidate
their assets.

A complete welfare analysis weighs the potential stabilizing advantages of lower
competition with the output costs introduced by market power : more competition
increases output because the system as a whole intermediates a larger proportion of
the capital stock. A social planner should balance a potentially more efficient system
in the long-run with less stability. And this trade-off is all the more acute as entry
takes time.

The qualitative findings are consistent with empirical evidence on the dynamics of
financial systems in the aftermath of an adverse shock and on the effect of concentration
on stability. Regarding the former, the equilibrium transition features a period of
low franchise value, high leverage and deleveraging after an adverse macroeconomic
shock, during which the risk of runs is high. Regarding the relationship between
concentration and stability, I do find an a priori ambiguous relationship, although
more forces work in the sense of more concentration implying more stability. Most
papers find indeed a positive relationship using many different methodologies and
measure of risk and concentration (Beck et al., 2003, 2013; Keeley, 1990) and more
recently Degl’Innocenti et al. (2018) for investment banks. Contestability is shown to
have a positive effect on stability Beck et al. (2013) consistent with the entry channel.
Table 3 in Freixas and Ma (2015) provides a summary of the empirical findings and
Zigraiova and Havranek (2016) provides a meta-analysis of the literature.

The model gives rise to several new testable predictions. The first contribution
highlights the limits of empirical analyses that do not take into account the state-
dependency of banks’ behaviors. A key prediction of the analysis is indeed that the
optimal capital investment of banks remains an endogenous multiplier of net worth
for small shocks around the steady-state but for large shocks, they take on a higher
leverage and runs may occur until they have accumulated enough net worth and
reached the safe zone. The second contribution highlights the importance of three
channels that have been overlooked by the current literature: the recapitalization
channel according to which more concentrated markets have the ability to recapitalize
more quickly and escape the run zone; the price-drop channels according to which
concentration influences the size of the drop in asset prices when a run occurs and the
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entry channel.
The rest of the paper is organized as follows. In section 2, I present a static model

with an oligopoly of intermediaries and systemic runs to isolate the franchise value and
the price-drop channels. In section 3, I extend the model to a dynamic setting which
allows for endogenous net worth accumulation, entry of banks and run at every period.
I analyze the properties of the equilibrium and solve for the transition path following
an aggregate productivity shock which depletes banks’ net worth. This section focuses
on two additional channels: the recapitalization and the entry channels. In section 4,
I illustrate the working of the model with numerical examples allowing for stochastic
productivity shocks. Section 5 concludes.

2 A Static Model of Oligopolistic Banks with Sys-
temic Runs

In this section, I present a static model of a finite number of banks deciding how
much deposits to issue and real assets to buy given their exogenous net worth and a
continuum of households choosing how much of their wealth to hold in deposits and in
real assets and in which there is a risk of a system-wide run. This section formalizes
two channels through which concentration affects stability: the franchise value and
the price-drop channels.

2.1 The Model

Environment. There are two stages. In the first stage, the two types of agents,
bankers and households, make their portfolio decision. There is a fixed supply of a
real asset called capital, denoted K̄, freely tradable at price q on a centralized market.
Each unit of capital provides a flow z of good. Banks borrow by issuing deposits. In
the second stage, a run game among households takes place.

There is only one source of uncertainty: the endogenous risk of a run. I restrict
attention to systemic runs, which is a run on the entire financial system. I posit that
in equilibrium a systemic run occurs with probability λ, which will be determined
endogenously. Figure 1 summarizes the different actors, their balance-sheet and their
financial relationships.
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Banks

Capital (qkb)
Net Worth (nb)
Deposits (δ)

Capital
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Capital (qkh) Net Worth (nh)
Deposits (δ)

Figure 1: Schema of financial system

Households. There is a mass one of identical households. In the first stage, they
can invest their net worth nh in two kinds of assets, the real asset kh and deposits at
all banks b ∈ {1, ...,B}, δb:

nh = qkh +
∑
b

δb.

Each unit of capital generates a stream of income z and capital gains dq per unit
of capital. Each unit of deposit generates interest income rb. If the bank has to be
liquidated because of a run, the household recovers a proportion ψb of its deposits at
bank b, determined endogenously. Households are subject to a convex cost of managing
capital in terms of good as in GK. The convex cost implies that it is increasingly
costly at the margin for households to manage capital directly. This cost ensures that
financial institutions have a meaningful role in the intermediation of funds without
forbidding households from directly investing in real assets.

f(kh) = α

2 (kh)2

If no systemic run occurs, the net worth of the household at the end of the second
period is the sum of its deposits at all banks augmented by the interest rate and of
the market value of the real asset, qNR = q + dq, augmented with the income from
the real assets, z

∑
b

(1 + rb)δb + (qNR + z)kh − f(kh)

If a systemic run occurs, the households’ net worth is equal to the sum of the recovered
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deposits after liquidation of the banks, the market value of the stock of capital at the
run price, and the stream of income:

∑
b

δb,hψb + (qR + z)kh − f(kh)

where ψb is the recovery rate per unit of deposit at bank b when a systemic run occurs.
The objective of the households is to maximize the discounted sum of consumption

in the first and second stage. I assume households have linear utility and discount
rate ρ. This assumption of linearity is meant to ensure the tractability of the bank’s
problem. Recall that the probability of a run is denoted λ. Taking the price of the
asset q as given, the representative household solves

max
{δ}B

b=1,kh
− nh + 1

1 + ρ

[
(1− λ)c+ λcR

]
with c =

∑
b

(1 + rb)δb + (qNR + z)kh − f(kh)

and cR =
∑
b

δb,hψb + (qR + z)kh − f(kh)

such that nh =
∑
b

δb,h + qkh

Run Game. In the second stage, all household play a run game. Taking the behavior
of others as given, a household decides whether to withdraw all of their deposits from all
banks. Since I focus on symmetric equilibria where all households take the same action,
I describe payoffs only for individual departures from the (symmetric) equilibrium
behavior. Assume first that no one runs. An atomistic individual is able to withdraw
their funds from all banks because the required sale of real assets by banks in order
to honor their creditor will not move the asset price at all. Doing so has a cost for
the individual: they have to give up the interest payment on their deposits. Assume
now that everyone runs. Banks have to liquidate sufficient amount of real asset to
reimburse their creditors and this moves the asset price. Either they can honor all of
their deposits, despite the decline in the value of their asset caused by the drop in
asset prices, in which case, not running has a benefit for households: it saves them
the interest payments delivered at the next instant. Or banks can’t honor their debt,
in which case they are liquidated and I assume that the liquidation value of the banks
is shared only among households who ran. A household who didn’t run would lose all
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of their deposits.

Banks. There is a finite number B of banks indexed by b ∈ {1, ...,B}. They are
owned by a banker, who maximizes the dividends received at the end of the second
period. Instantaneous utility is denoted ub(.), which we assume to be bounded from
below, increasing and concave. I will assume in this section that it takes a CRRA
form

ub(d) = d1−γ

1− γ with γ ∈ [0, 1)

The assumption that utility is concave in dividends implies that equity issuance is
costly. It is indeed a necessary condition for net worth to matter, otherwise a bank
would issue equity to jump directly to the unconstrained optimal investment.

A bank chooses its investment in real assets, kb. They behave a la Cournot, i.e.
they make their investment in capital decisions taking others’ investment as given but
internalizing their impact on returns to capital, on asset prices and on the probability
of a run. Contrary to households, they are financial experts and do not face capital
management costs. They can issue deposits to households without any exogenous
limit. They enter the first stage with some net worth denoted nb.

If there is no run, the net worth at the end of the second stage is given by

(q + z)kb − (1 + rb)δb

When there is a run, prices drop and the net worth at the end of the second stage
is

nb − kb(q − qR).

After a successful run, all banks are liquidated. Each banker is forced to exit and gets
vR. One should think of vR as the value from the point of view of a banker to go back
to the population of households and in the rest of the section I set vR = 0.
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The problem of a bank is therefore to solve

max
{δ,k}

(1− λ)v(db) + λvR

with db = (q′ + z)kb − (1 + rb)δb (1)

such that qkb = nb + δb

When choosing capital investment, a bank will internalize the impact of their
action on asset prices q, on the interest rates paid on deposits rb as well as on the
equilibrium probability of a run λ.

Recovery rate. The recovery rate of deposits at bank b is the amount that depositors
get back after liquidation of the bank per unit of deposits plus the stream of income.
It is given by

ψb = max
(
qRkb
δb

, 1
)

+ zkb
δb

(2)

Market clearing. The deposits and capital markets in the first stage and the goods
market in the second stage must clear. By Walras’ law, it is sufficient that the deposits
and capital market clear:

∀ b ∈ {1, ...,B}
∫
δb,hdh = δb (3)

B∑
b=1

kb +
∫
khdh = K̄ (4)

Asset prices at the end of the second stage. At the end of the second stage,
I assume that the price of the asset (i) when there is a run, qR, is equal to the value
of the asset should households operate all the capital stock forever

qR =
z − α

2 K̄
2

ρ
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and (ii) when there isn’t a run, qNR, is equal to the value of the asset if the financial
system operates without the risk of a run forever:

qNR =
z − α

2

(
K̄

B+1

)2

ρ
.

While these prices are exogenous in this section, I show in the next one that they are
the equilibrium prices of the fully dynamic model in the case where there is no entry
of banks after a systemic run and where there is a risk of runs only in the current
period.

2.2 Properties of the Static Equilibrium

I now solve for the optimal behaviors of intermediaries, the equilibrium and analyze
how the risk of a systemic run depends on the degree of competition, B. Proofs can
be found in appendix.

Run Game and Probability of a Run I first solve for the equilibria of the run
game happening in the second stage. The existence of multiple equilibria is a function
of the aggregate level of equity should the entire system be liquidated. A run might
occur whenever the system is solvent if there is no run and insolvent if there is a run.
Denote ∆ the sum of deposits of all banks, qR, NR, KR and q,N,K the price of the
asset, the sum of net worth of all banks, the sum of capital investment of all banks
just after and before the systemic run. There are multiple equilibria whenever

NR ≡ N + (qR − q)K < 0

Denoting Ψ the aggregate recovery rate, the second inequality becomes

Ψ = qRK

qK −N
= qRK

∆ < 1

The lower the equity over capital ratio, the more leveraged the system, the more
likely the existence of multiple equilibria. Whenever there are multiple equilibria, I as-
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sume that a sunspot with probability λ̄ coordinates depositors on the run equilibrium.6

The unconditional probability of a run is therefore given by λ = λ̄1Ψ<1.
From the point of view of an individual bank b taking others’ bank net worth and

capital as given, when all other banks are symmetric, this condition is:

λ(k,k−b, n,n−b) = λ̄1((B−1)n−b+nb+(qR−q)((B−1)k−b+kb))<0 (5)

where I have dropped the dependence of λ(.) on B and z.

Households Optimal Decisions and Pricing Equations The dynamics of asset
prices and the interest rate on deposits at bank b should be consistent with the
households optimal portfolio and intertemporal allocation. The F.O.C. of households
are given by

qNR − q + z − f ′(kh) = −λ(qR − qNR) + ρq (6)

∀ b ∈ {1, ...,B} rb = λ(1 + rb − ψb) + ρ (7)

where the first condition is the asset pricing equation and the second is the
traditional Euler equation for deposits adjusted for the probability of a run and the
recovery rate. In contrast with an environment in which banks are atomistic and take
the rate of deposits and asset prices as given, bankers in this model internalize the
impact of their decisions on prices and returns implied by (6) and (7).

Bank’s Capital Investment and Deposit Decisions I now solve for the opti-
mal choice of capital investment and deposit of a bank taking other banks’ capital
investments as given.

Rewriting the bank’s problem. Using the F.O.C. of the households 6 and 7, and the
definition of the recovery rate (2), one can rewrite dividends at the end of the second

6Should λ̄ be related to fundamentals? There isn’t a consensus in the literature regarding the best
way to model the likelihood of runs arising from coordination failure among depositors. Some papers
choose to make the sunspot probability independent of any endogenous variables, e.g. Gertler et al.
(2016, 2017), while others make the probability of a run an increasing function of some measure of
risk in an ad-hoc manner, usually leverage (Gertler and Kiyotaki, 2015). The former is obviously
an extreme case of the latter, but it has the advantage of being transparent and simple and to
avoid having to take a stand on the exogenous relationship between the probability of a run and
the fundamentals of the system. In one of the numerical exercise, 4, I show that my results are
qualitatively similar when the arrival rate is a smooth function of the fundamentals.

12



stage of a bank in case of no run shock, given by equation (1), as

d = 1
1− λ(k,n)

(1 + ρ)n+ f ′

K̄ − B∑
j=1

kj

 kb
 (8)

This shows how the net excess return on capital depends on the choice of capital by
the individual banker through the aggregate capital investment of banks K = ∑B

j=1 kj .
λ also depends on kb, in a discontinuous fashion, as shown in 5.

Given the normalization that vR = 0, the optimal capital investment is solution to

max
k

(1− λ(k,k−b, n,n−b)) v
 1

1− λ(k,k−b, n,n−b)

(1 + ρ)n+ f ′

K̄ − B∑
j

kj

 kb

(9)

Given the non-linearities introduced by λ, the objective function of a bank at a
given instant is piece-wise concave with respect to capital, with a downward step at
the point where λ jumps up. There are therefore two candidates for optimality. Figure
2 illustrates the optimal capital investment for two different levels of n. The optimal
investment can be the interior point as in the gray curve or at the corner as in the
black curve.

k

Objective
Function

Figure 2: Stylized drawing of the objective function
Legend: The black line corresponds to a high net worth, the gray line to a low net worth

Interior and corner solutions. The interior solution, denoted kI , is solution to the
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following F.O.C.:

f ′

K̄ − B∑
j=1

kj

− f ′′
K̄ − B∑

j=1
kj

 kb = 0 (10)

In a symmetric equilibrium of the Cournot game, and using the assumed functional
form for f , 10 is

kI = K̄

B + 1

Each bank holds a fraction 1
B+1 of the capital stock and the remaining fraction

is held by households. kI is independent of the vector of banks’ net worth. When I
extend the model to allow for productivity shocks, kI will depend on the vector of
banks’ net worth.

The corner solution, denoted kC , is given by the highest capital investment such
that λ = 0. It is not only a function of one’s net worth but also a function of the
other banks’ net worth and capital investment

kC(n,n−b,k−b) = 1
q − qR

∑
j 6=b

nj + n

−∑
j 6=b

kj = N

q − qR
−
∑
j 6=b

kj

where N is the sum of banks’ net worth as defined above. In a symmetric
equilibrium in which all banks have the same net worth n and invest the same amount,
it is given by

kC = n

q − qR
.

The corner investment is a decreasing function of the difference between the current
price and the price in a run. In the limit where the recovery rate is 1, qR − q → 0,
capital investment and leverage can be infinite without banks taking the risk of a
run. The ratio qR

q
therefore measures the degree of illiquidity of the financial system

aggregate balance sheet. The closer it is to 1, the higher the aggregate liquidity of
the financial sector and the less risky high leverage is. Crucially asset prices are
endogenous to the actions of banks, which I analyze in the next paragraph. In the
dynamic setting, asset prices will also depend on the entire future path of banks’
actions.
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Choosing between the interior and the corner strategy amounts to choosing the
one that brings the highest flow of utility. Denoting the net return on capital

R (kb,k−b) = f ′

K̄ − B∑
j 6=b

kj − kb

 (11)

the global optimum for capital investment is solution to the following comparison

max
v ((1 + ρ)n+R

(
kC(n,n−b,k−b),k−b

)
kC(n,n−b,k−b)

)
,

(1− λ(k,k−b, n,n−b, z,B))γv
(
(1 + ρ)n+R

(
kI ,k−b

)
kI
)  (12)

The decision amounts to a comparison between higher profits and risk-taking. At
the interior point, a bank enjoys more profit

R
(
kI ,k−b

)
kI > R

(
kC(n,n−b,k−b),k−b

)
kC(n,n−b,k−b)

which gives it an incentive to take on more risks. But by doing so, it also runs the
risk of losing their franchise value.

2.3 Symmetric Cournot Equilibria

I focus on symmetric Cournot equilibria, in which either all banks simultaneously
play the corner solution—a "corner" equilibrium—or all play the interior solution—the
"interior" equilibrium. I assume that all banks have the same exogenous amount of
net worth.

Asset prices and size of price drop. Asset prices in the first stage are the
discounted sum of today’s flow of income and tomorrow’s asset prices. From the
F.O.C. of the households, given by (6), the price of the asset when banks all play
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interior or all play corner is given by

qI =
z + λqR + (1− λ)qNR − α

2

(
K̄

B+1

)2

1 + ρ
(13)

and qC(n) =
z + qNR − α

2

(
K̄ −B n

qC(n)−qR
)2

1 + ρ
(14)

where the second equation defines qC implicitly as a function of n.
From the two expressions (13) and (14), one can derive an important result that

underlies the price-drop channel: the price drop in case of a systemic run is larger for
less concentrated system.

Lemma 1. The current price of the real asset minus the run price, qI − qR and
qC − qR, is increasing in the number of banks, B.

The intuition for this lemma is as follows. More competitive financial systems are
more efficient: the size of intermediation is larger, the gap between the returns on
capital and on deposits is lower and asset prices are higher. Asset prices in both types
of equilibria, (13) and (14), are indeed increasing in the number of banks. Given that
the price in case of a run, qR, is independent of the level of competition in this static
version of the model, it in turn implies that the drop in asset prices is increasing in
the number of intermediaries. In other words, when more capital has to be liquidated
and absorbed by households who are less efficient at managing capital, asset prices
have to drop more. This has important implications for the risk-taking behavior of
intermediaries, which I analyze in the rest of the section.

Equilibria as a function of net worth. The following proposition characterizes
the set of symmetric Cournot equilibria for every level of equity of a bank. It establishes
that for low levels of equity, only the interior equilibrium is supported, and for high
levels of equity, only a corner equilibrium is supported. For intermediate levels of
equity, the two types of equilibria are possible.

Proposition 2.1. There exists a unique {nC1 , nI1} and nSS with nC1 ≤ nI1 < nSS such
that

• If 0 ≤ n < nC1 , the only symmetric Cournot equilibrium is one in which all banks
play the interior solution, kI .
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• If nC1 ≤ n < nI1, all banks playing the interior investment, kI , or all banks playing
the corner solution, kC(n), are two possible symmetric equilibria

• If nI1 ≤ n ≤ nSS the only symmetric Cournot equilibrium is one in which all
banks play the corner solution, kC(n)

Figure 3 illustrates the best response functions of a bank when all other banks
play the corner solution (black line) or the interior solution (gray line) for all values
of net worth. For low levels of net worth, banks have a strong incentive to play the
risky strategy while for high levels of net worth they prefer to play safe. This stems
from the fact that the franchise value is increasing in net worth: the higher its equity,
the stronger the incentives to play safely and avoid the risk of runs. In between the
two thresholds both equilibria are sustainable. If all banks play safe, it is optimal to
play safe and if all banks play interior and risky it is optimal to play interior as well.
This interesting complementarity among banks’ actions stems from the fact that the
probability of run depends on the system-wide leverage and not on individual leverage.
If all banks have a low leverage, an individual bank can eliminate the risk of runs
without restricting its investment as much as it would have to in a situation where all
other banks have a high leverage. In the remainder of the paper, whenever there is
multiplicity, I choose an arbitrary n1 ∈ [nC1 , nI1] as the threshold value below which I
assume all banks play interior and above which all banks play corner.7

Corollary 1. There exists n1 ∈ [nC1 , nI1] with n1 > 0 such that the capital investment
function k(n) given by

k(n) =


kI if n < n1 Run zone

kC(n) if n1 ≤ n < nSS Safe zone

kI if nSS ≤ n Steady-state zone

is compatible with an outcome of a Cournot game. Furthermore, the probability of
7The existence of multiple equilibria between nC1 and nI1 implies that coordination failures might

occur whenever the two equilibria are ranked. It is a priori unclear which equilibrium is most efficient.
If banks coordinate on the corner equilibrium, intermediation and hence output is lower in the current
period. If banks coordinate on the interior equilibrium, intermediation is maximized (although still
too low due to the oligopolistic ineffiency) but there is a risk that banks will be wiped out in a
systemic run which would imply output losses in all future periods. Although this coordination
failure is a feature of the equilibrium, it is independent of the level of competition and for that reason
I do not discuss it further.
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n

Best response
k(n, k−b)

nC1 nI1

nC1
q−qR

BnI1
q−qR − (B − 1) kI

kI

Figure 3: Stylized drawing best response functions
Legend: The black line displays the best response of a bank when all other banks play corner.

The gray line displays the best response of a bank when all other banks play interior.

a systemic run λ(n) is given by

λ(n) =

λ̄ if n < n1

0 if n ≥ n1

Concentration and stability: franchise value and the price-drop channels.
The degree of concentration, B, decreases the risk of a run through two channels: the
franchise value and the price-drop channels. To make this statement more precise,
I show now that the total amount of net worth across the financial system required
to i) avoid the risk of a run, BnI1, and to ii) make it avoidable, BnC1 , increase as
the number of banks B increases. If the degree of concentration were irrelevant for
stability, then these two aggregate thresholds should be independent of B, the number
of banks.

To isolate the franchise value, I consider first the partial effect of B on BnC1 and
BnI1 holding asset prices, qC − qR, fixed. To isolate the price-drop channel, I then
consider the total effect. The following proposition formalizes the key finding of this
section: both the franchise value and the price-drop channel imply that a system
with more intermediaries requires more aggregate equity to avoid the risk of a run. I
first introduce the following notations: the price drop dq(B) = qC(B)− qR(B), the
required aggregate net worth for the safe equilibrium to be sustainable, NC

1 (B, dq) =
BnC1 (B, dq) and the required aggregate net worth for the safe equilibrium to be
necessary, N I

1 (B, dq) = BnI1(B, dq).
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Proposition 2.2. 1. Franchise value channel. Holding dq = dq(B) fixed, the
aggregate thresholds are increasing in the number of intermediaries. If B′ > B

then

NC
1 (B′, dq(B)) > NC

1 (B, dq(B)) and N I
1 (B′, dq) > N I

1 (B, dq(B))

2. Price-drop channel. The aggregate thresholds further increase when asset prices
are allowed to change. If B′ > B then

NC
1 (B′, dq(B′)) > NC

1 (B′, dq(B)) and N I
1 (B′, dq(B′)) > N I

1 (B′, dq(B))

Franchise value channel. Larger and more profitable banks enjoy a higher franchise
value and are therefore willing to take on less risk. This channel implies that as
concentration increases, the total amount of equity in the financial system required to
keep banks in the safe zone decreases. The run zone shrinks with concentration.

Price-drop channel. Lower concentration in the banking sector a implies larger
price drop when a run occurs because asset prices in normal times are higher, as the
financial system intermediates a larger fraction of the capital stock. Consequently,
banks find it less appealing to play the interior investment strategy because it requires
more net worth to reach a given level of capital investment. This channel implies
that as concentration increases, the total amount of equity in the financial system
required to keep banks in the safe zone decreases. This makes the run zone shrink
with concentration.

An Efficiency - Stability Trade-off. A highly concentrated shadow banking
section is stabilizing but it is also less efficient when it invests at the interior solution
of the Cournot game because large banks restrict their capital investment which lowers
output. In the run zone, where banks coordinate on the interior Cournot equilibrium,
total output per unit of time net of management cost is

K̄z − f
(
K̄ −BkI

)
= K̄z − α

2

(
K̄

B + 1

)2

.

Total output is increasing in the number of banks: the more banks there are, the
more competition and the less the distortion from market power. Total output is also
decreasing in α, the degree convexity of the households’ cost function: the higher α,
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the more costly it is at the margin for households to manage capital, the higher the
output loss for a given amount of capital holding.

3 A Dynamic Model of Oligopolistic Banks with
Systemic Runs

The first section assumed that banks’ net worth was exogenous, that systemic runs
could happen only in the current period and that there was no entry of banks after a
run. In this section, I extend the previous framework to a dynamic setting in which
households and banks decide how much net worth to consume at each instant, in
which run can happen in the current as well as in future periods and in which entry
of new banks eventually occurs after a systemic run. A dynamic setting allows us to
analyze how the risk of runs in the future feeds back into current asset prices and
run risk, how the accumulation of net worth which depends on endogenous dividends
choices shapes the time the system spent in the run zone, which in turn determines
the franchise value and asset prices. This section focuses on two additional channels:
the recapitalization and the entry channels. The model also allows for productivity
shocks and the analysis will focus on the transition path following a productivity
shock that depletes banks’ net worth.

3.1 The Model

Environment Time is continuous. There are two stages within an instant. These
two stages are the same as in the static setting of the previous section. There are two
sources of uncertainty. Productivity z can take two values, z < z̄. When it is low (resp.
high), it switches to low (resp. high) with arrival rate ζ(ζ̄).8 I define the function ζ
as follows ζ(z) = ζ if z = z and ζ(z) = ζ̄ if z = z̄. The second source of uncertainty
is the endogenous risk of a run, explained in the previous section. Systemic runs
follow a Poisson process with arrival rate λ per unit of time, which will be determined
endogenously.

8Discrete jumps in TFP are needed to trigger discrete jump in asset prices and in banks net worth
in order for the economy to experience runs. If the exogenous process were continuous in time, like
most of the macrofinance literature assumes, banks would continuously adjust their net worth to
avoid the crisis zone.
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Households Law of motion of net worth. When neither productivity nor run shocks
occur, the net worth nh of a household h evolves according to

.
nh = (q̇ + z)kh +

∑
b

δbrb − f(kh)− ch

where ch denotes household consumption. In case of a discrete productivity change
∆z, asset prices and net worth discontinuously jump. Denoting qz the post z-shock
asset price, ∆nh = ∆qzkh with ∆qz = qz − q. And the post z-shock net worth is:
qzkh +∑

b δb,h

When a systemic run occurs, households experience a change of net worth stemming
from both the change in asset prices and the loss on deposits at all banks:

∆nh = ∆qRkh +
∑
b

δb,h(ψb − 1)

where ∆qR = qR− q is the discontinuous drop in asset prices at the time of the run
and ψb is the recovery rate per unit of deposit at bank b when a systemic run occurs.

Hamilton-Jacobi-Bellman equation. The aggregate state variables of this economy
are the vector of banks net worth n, the value of productivity z and the number of
banks B. Taking the asset price q, the intensity of run risk λ∗ in equilibrium,9 and
the aggregate state variables as given, the following HJB is solution to the household’s
problem

ρH(nh,n, z,B) = max
c,{δ}B

b=1,kh
h(c) +Hn

(
(q̇ + z)kh +

∑
b

δbrb − f(kh)− c
)

+ λ∗ (n, z,B)
[
H

(
nh + ∆qRkh +

∑
b

δb,h(ψb − 1), 0, z, 0
)
−H(nh,n, z,B)

]

+ ζ(z) (H (nh + ∆qzkh,n + ∆qzk, z′,B)−H(nh,n, z,B))

+
∑
b

Hnb

.
nb

+ η (H(nh,nE, z,B′)−H(nh, 0, z, 0))1B=0

with nh = qkh +
∑
b

δb

9The star superscript on λ∗ distinguishes the equilibrium arrival rate which is only a function
of the state variables (n, z,B) from the general arrival rate λ, which is also a function of banks
portfolio decisions.
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The first term is the flow utility of consumption. The second term corresponds to
the deterministic drift in net worth. The third corresponds to the run shock. In case
of a run, all banks fail, hence B = 0. The fourth term corresponds to the productivity
shock. The fifth to the deterministic drift in the vector of banks net worth. The last
term corresponds to the entrance of new banks after a run, which I explain later in
this section.

Banks Instanteneous utility is denoted ub(.) and is assumed to be HARA with
parameters γ, θ:10

ub(d) = ξ
(d− γθ)1−γ

1− γ with d > 0, γ ∈ [0, 1), ξ > 0. θ ≥ 0 (15)

A bank chooses dividends db and investment in real asset kb, thereby a path of
net worth nb and an issuance of deposits δb. As before, they behave à la Cournot. In
this dynamic setting, they not only internalize the effect of their investment in capital
but also the effect of their accumulation of equity on the returns to capital, on asset
prices and on the probability of a run, taking others’ investment and accumulation
decisions as given.

Law of motion of banks’ net worth. Real asset holdings, qkb are financed either by
deposits, δb, or by net worth, nb. I omit banks indexes when no confusion results.

n = qk − δ

As for the household, the general law of motion of equity

dn = (dq + z)k − rδ − d

can be rewritten separately for the case without shock and the cases with shock. If
neither run nor productivity shocks occurs, the law of motion is deterministic

ṅ = (q̇ + z)k − rδ − d
10γ → +∞ gives the CARA case, θ = 0 gives the usual CRRA case and θ > 0, θ < +∞ is the

decreasing relative risk aversion case.
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When there is a run, prices jump discretely and net worth evolves according to

∆n = k∆qR

where ∆qR denotes the discrete jump in asset price when all banks experience a run.
After a successful run - and all runs are successful in equilibrium -, all banks are
liquidated. Each banker is forced to exit and gets vR. I think of vR as the value of
becoming an atomistic household, which is essentially vR = 0 from the point of a
banker who is a large agent in the economy. In the calibration, I set it to 0.

Hamilton-Jacobi-Bellman equation. The state of the economy is summarized by
the vectors of banks’ net worth n, the level of productivity z and the number of banks
B. Denote n−b,k−b, ṅ−b the vector of net worth, capital investment and change of
net worth of all other banks except b. Taking these three vectors as given, a bank’s b
value function solves the following HJB equation

ρv(n,n−b, z,B) = max
d,k

u(d) + vn ((q̇ + z)k − rδ − d) +
∑
j 6=b

vn−j ṅ−j

+ λ(k,k−b, n,n−b, z,B)(vR − v(n,n−b, z,B))

+ ζ(z) [v(n+ ∆qzk,n−b + ∆qzk−b, z′,B)− v(n,n−b, z,B)]

The first term is the flow utility of dividends. The second term corresponds to the
deterministic drift in net worth. When choosing dividends and capital investment, a
bank will internalize the impact of their action on the returns q̇ and the interest rates
paid on deposits r. The third corresponds to the deterministic drift in the vector of
other banks’ net worth, which bank b takes as given. The fourth corresponds to the
run shock where λ(k,k−b, n,n−b, z,B) is the arrival rate of a systemic run. It depends
on the aggregate state variables of the economy and on the banks’ capital investments.
λ∗(n,n−b, z,B) which I used in the households problem, is the equilibrium arrival
rate, once banks have chosen their optimal capital investment. In case of a run,
a banker gets vR. The assumption that utility is bounded from below and that
vR − v(n,n−b, z,B) < 0 everywhere in the state-space ensures that a banker would
never want to voluntarily leave banking to get the outside value vR. The fifth term
corresponds to the productivity shock.
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General Equilibrium Conditions Recovery rate. The recovery rate of deposits
at bank b is given by11

ψb = max
(
qRkb
δb

, 1
)

Market clearing. The good, deposits and capital markets must clear.
Entry and run price. After a run has occurred, B′ households are simultaneously

and randomly drawn with intensity η per unit of time to become the new bankers. η
and B′ are parameters. Entry occurs only after a run. In normal times, the number
of banks remains constant. I further assume that B′ = B, i.e. the number of new
banks randomly created at some point after a run is the same as the number of banks
prevailing before the run.12 I assume that, whenever banks enter, they are exogenously
endowed with a level of equity equal to nE = 0, with E stands for entry.

In addition, I call "immediate entry", the special case corresponding to η → +∞,
in which the new banks enter immediately after the liquidation of the incumbants,
and "no entry", the special case corresponding to η = 0, in which no bank never enters
after a run.

Finally, the run price should be consistent with the post-run macroeconomic
conditions, which is:

qR(n, z,B) = q(0, z, 0) (16)

where I use the convention that banks’ net worth is zero whenever there is no
banks currently operating. In the aftermath of a run, and as long as the random draw
of new bankers hasn’t occurred, all the capital stock is held by households.

11In the dynamic continuous time setting, the recovery rate doesn’t include the stream of income,
in contrast with the static formulation of the previous section.

12The timing and the number of entrants are exogenous. Introducing a free-entry condition would
be a natural way to make both the timing and the number of entrants endogenous. It turns out to
be rather complicated to deal with in a dynamic setting with a finite number of banks because there
is no reason why banks should enter at the same time, which breaks the symmetry among banks
needed for tractability. The assumption of exogeneity amounts to assuming that a) once B banks
are operating, at no point of the state-space would an additional bank be willing to enter ; b)the cost
of entry is such that B simultaneously entering is optimal for private agents ; c)opportunity to enter
occurs randomly over time. These two assumptions keep the framework tractable while capturing the
main mechanisms. Regarding the assumption that B′ = B, the analysis could easily be extended to
the more general case where B′ is different from B. This is beyond the scope of this paper.
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Equilibrium Definition An equilibrium is a collection of functions H(nh,n, z,B),
{δb,h(nh,n, z,B)}Bb=1, c(nh,n, z,B) kh(nh,n, z,B), v(n,n−b, z,B), k(nb,n−b, z,B),

δ(nb,n−b, z,B), d(nb,n−b, z,B), λ∗(n, z,B), q(n, z,B) such that i) taking prices as
given, H(nh,n, z,B), c(nh,n, z,B), kh(nh,n, z,B), {δb,h(nh,n, z,B)}Bb=1 are solutions
to the households’ problem, ii) taking other bank’s behavior as given, v(n,n−b, z,B),

k(nb,n−b, z,B), d(nb,n−b, z,B), δ(nb,n−b, z,B) are solutions to the bank’s prob-
lem, iii) the deposits, asset and goods markets clear, iv) the run price is given by 16 is
compatible with the post-run equilibrium conditions and v) λ∗(n, z,B) is consistent
with the equilibrium of the run game.

3.2 A Symmetric Equilibrium with Systemic Runs

In this section, I solve for the equilibrium of the model assuming that banks have the
same amount of net worth at every point in time. I abstract from productivity shock
and come back to the case with productivity risk in the numerical examples. The
restriction to symmetric path of net worth is for tractability. It allows us to derive the
main intuitions and mechanisms through which the degree of concentration influences
the likelihood of bank runs. All proofs can be found in appendix.

Run Game and Arrival Rate of Run The run game is exactly the same as in
the static framework. λ denotes the arrival rate of a run.

Households Optimal Decisions and Pricing Equations The dynamics of asset
prices and the interest rate on deposits at bank b should be consistent with the
households optimal portfolio and intertemporal allocation.

Pricing equations. Assuming that households are risk neutral and no productivity
shock ζ(.) = 0, their F.O.C. are

q̇ + z − f ′(kh) = −λ∆qR + ρq (17)

∀ b ∈ {1, ...,B} rb = λ(1− ψb) + ρ (18)

where the first condition is the asset pricing equation and the second is the
traditional Euler equation for deposits adjusted for the probability of a run and the
recovery rate. Through these equations, the bankers will internalize the impact of its
choices on prices and returns.
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Bank’s Capital Investment and Deposit Decisions I now solve for the optimal
choice of capital investment and deposit of a bank. I fix the vectors of banks’ net worth,
n, and solve for the static problem of a bank taking other banks capital investments
as given.

Law of motion of a bank’s net worth. Using the F.O.C. of the households 17 and
18, one can rewrite the law of motion of a bank in case of no run shock as

ṅ = (λ(k,n) + ρ)n+ f ′

K̄ − B∑
j=1

kj

 kb − d (19)

In the rest of section 3.2, I restrict attention to equilibrium paths that satisfy the
following properties:

Assumption 1. (Equilibrium Restrictions) I restrict attention to equilibrium paths
where the following is true

1. All banks have the same amount of net worth.

2. F ∗(n) is differentiable with (F ∗)′ > 0.

3. There exists ε > 0 such that kC∗(n) is differentiable with ∂kC∗

∂n
> ε.

4. Banks’ capital investment strategies are Markovian, symmetric and stationary.

The restriction to symmetric path of net worth keeps the framework tractable while
allowing us to derive the main mechanisms. Under assumption 1, I show in appendix
that proposition 2.1 still holds, i.e. that there exists two thresholds nC1 , nI1 such that if
banks’ net worth is lower than nC1 only the interior equilibrium is sustainable, if banks’
net worth is higher than nI1 only the corner equilibrium is sustainable and both are
sustainable for intermediate levels of net worth. It is not obvious that this proposition
should also hold in a dynamic setting because asset prices and the value function also
depend on the future path of the economy. In the rest of the section, I focus on the
dynamics of the system.

Steady-State, Dividend and Accumulation Policy I start by deriving the
accumulation and dividends policies of banks. I first characterize the steady-state of
the model.

Steady-State. In steady-state, banks invest at the optimal interior, kI , and their
net worth is such that this investment is also safe given the price-drop.
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Lemma 2. The interior steady-state with positive net worth is given by13

kSS = K̄

B + 1

qSS =
z − f ′

(
K̄ −BkSS

)
ρ

nSS = kSS(qSS − qR)

dSS = ρnSS + f ′
(
K̄ −BkSS

)
kSS

(20)

Notice that lemma 2 provides steady-state expressions as a function of primitives
only when qR is exogenous which is the case only when there is no-entry after a
systemic run (η = 0), qR = z−α2 K̄

2

z
. qR is in general an endogenous object, which is

the focus of a later section.
Dividends and saving policy. Along the equilibrium path, dividends are constant is

the run zone, then increasing is the safe zone until the steady-state has been reached.
Denoting k∗1(n), q∗1(n) the derivative of kC(nb,n−b), q(nb,n−b) respectively, with respect
to their first argument, along the equilibrium path, the following lemma characterizes
the path of dividends and accumulation decisions

Lemma 3. With utility 15, along the symmetric equilibrium path, if the path of capital
investment, k∗(n), is of the form described in corollary 1, dividends are given by

• For all n ∈ [0,max(n−1, 0)], ḋ = 0 and d(n) = (ρ + λ̄)n + R(kI)kI where
n−1 = d(n1)−R(kI)kI

ρ+λ̄

• For all n ∈ (max(n−1, 0), n1), ḋ = 0 and d(n) = d(n1)

• For all n ∈ [n1, n
SS), d solves

γ
ḋ

d− γθ
= kC∗1 (n)α

(
K̄ − (B + 1)kC∗(n)

)
(21)

with kC∗(n) = n

q(n)− qR , kC∗1 (n) = 1− kC∗(n)q∗1(n)
q(n)− qR

• For all n ≥ nSS, d(n) = dSS

• For all n, the path of saving is given by

ṅ = (ρ+ λ∗(n))n+ α
(
K̄ −Bk∗(n)

)
k∗(n)− d

13One needs to specify that this steady-state is the one with positive net worth because there may
also exist an (unstable) steady-state with negative net worth, from which I abstract.
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Below n1, in the run zone, banks understand that keeping dividend payments low
accelerates the accumulation of net worth and the exit of the run zone. The level of
dividend payments is constant and equal to d(n1) everywhere between n−1 and n1

because their current investment - the interior Cournot - is disconnected from their
current level of net worth, which implies that locally banks do not have any incentive
to tilt the time path of dividends either in an increasing or decreasing fashion. From
the concavity of the utility function, the path of dividends has to be continuous at n1,
which pins down d(n1).

For low enough net worth—below n−1—the constant level of dividends d(n1) would
imply a decrease in net worth, i.e. d(n1) > (ρ+ λ̄)n+R(kI)kI . In this zone, banks
will also decide to set their dividends constant, but they are not constrained to set
it to d(n1) by the same continuity at n1 argument because it will turn out that in
equilibrium, they will never reach n1. In that zone, banks set the level of dividends
to keep net worth constant. This part of the state-space isn’t empty if and only if
d(n1) < (ρ+ λ̄)n+R(kI)kI .

Dividends are increasing in the safe zone because
(
K̄ − (B + 1)kC∗(n)

)
> 0. In

this zone, the marginal value of net worth is strictly positive: postponing dividend
payments and building net worth allow banks to increase their investment capacity in
the future and eventually reach the level of net worth for which it is safe to invest at
the interior Cournot capital investment. At this point dividends stop increasing.

The Euler equation for dividends in the safe zone, given by equation 21, also
features the derivative of the corner capital investment with respect to a bank own
net worth, kC∗1 (n). The latter is also positive and depends negatively on the size
of the price drop q(n) − qR. The larger the price drop, the smaller the amount of
additional capital a marginal increase in net worth permits and the slower the increase
in dividends over time should be. It also depends negatively on the derivative of asset
prices with respect to a bank own net worth, q∗1(n): this is because they take into
account the positive impact the accumulation of their net worth has on asset prices in
equilibrium, which tempers the increase in capital investment that an additional unit
of net worth can buy. This derivative has to be consistent with the equilibrium asset
price function which is the focus of the next paragraph.

Transition Path I analyze the transition path in two steps. I first analyze the
dynamics in the safe zone, when n ∈ [n1, n

SS]. The dynamics are characterized by a
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system of differential equations. I provide an existence and uniqueness result for a
linear approximation around the steady-state. In a second step, I characterize the
full transition path, including the run zone. For tractability, I look at the case with
no entry after a run, η → 0, which implies that the run price is exogenous. The
intuitions go through in the more general case and I discuss the implications of η > 0
in subsection 3.2.

Transition path in the safe zone. In the safe zone, when n ∈ [n1, n
SS], capital

investment is given by kC∗(n). The dynamics of the system is characterized by the
following system of coupled differential equations for net worth, dividends and asset
prices

ṅ = ρn+ α
(
K̄ −BkC∗(n)

)
kC∗(n)− d (22)

q̇ = ρq − z + α
(
K̄ −BkC∗(n)

)
γ

ḋ

d− γθ
= kC∗1 (n)α

(
K̄ − (B + 1)kC∗(n)

)
with kC∗(n) = n

q − qR
, kC∗1 (n) = 1− kC∗(n)q∗1(n)

q − qR
, q∗1(n) = q̇

Bṅ

and initial condition n(t0) = n1 and terminal conditions

kSS = K̄

B + 1 qSS =
z − α

(
K̄ −BkSS

)
ρ

dSS = ρnSS + α
(
K̄ −BkSS

)
kSS

The following lemma establishes that in the safe zone, dividends, prices, capital
and net worth increase over time. It also establishes existence and uniqueness for the
solution to the linearized model around the steady-state which gives us confidence for
the existence and uniqueness of the non-linear solution. I finally give an expression for
the speed of convergence whose dependence on the level of competition is discussed
later.

Lemma 4. 1. Along any transition path solution to the initial-terminal value prob-
lem 22, all variables, (d(t), n(t), kC(t), q(t)), are increasing.

2. There exists a unique solution (d(t), n(t), k(t), q(t)) to the linear approximation
of the system 22 around (dSS, nSS, kSS, qSS) and the (negative of the) rate of
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convergence of capital to its steady-state is given by:

`− =
z − ρqR −

√
(z − ρqR)2 + 4

γ
(1− kSSqSS1 ) (dSS − θγ) (B + 1)α

2 (qSS − qR)

Figure 4 represents the system 22 in the (k, q̃) plane with q̃ = q − qR. In black I
draw the line corresponding to the locus of (k, q̃) compatible with ˙̃q = 0. The dotted
black line represents the locus of (k, q̃) compatible with the initial condition. Capital
is always increasing in the safe zone, so all horizontal arrows point to the right. Asset
prices decrease if they start below the black line and increase if they start above
it. The system has to start at some point on the dotted black line. It is immediate
from the phase diagram why capital and asset prices should be increasing along any
transition path. The grey line represents one possible path.

It is not straightforward at all to obtain general conditions over the parameter
space such that the forward-backward system of differential equations 22 admits one
and only one solution. Lemma 4 establishes existence and uniqueness only for the
linear approximation of the system. I check numerically that for my parametrization,
a solution to the non-linear system exists and is unique. I discuss further this issue in
the proof of lemma 4.

k

q̃

˙̃q = 0

q̃ = n1
k

kSS

Figure 4: Phase diagram of system in safe zone

Full transition path. I are now ready to characterize the equilibrium path of the
system.
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Proposition 3.1. Any transition path starting at n0 ≥ 0 and satisfying assumption 1
is characterized by:

1. (Run zone with certain death). If n0 ∈ [0,max(n−1, 0)], k∗(n) = kI , the system
operates in the run zone, λ∗(n) = λ̄, n is constant over time, the system is in
steady-state, banks eventually experience a run.

2. (Run zone with escape). If n0 ∈ (max(n−1, 0), n1), k∗(n) = kI , the system
operates in the run zone, λ∗(n) = λ̄, n increases and reaches in finite time n1, at
which point the system enters the safe zone

3. (Safe zone). If n0 ∈ [n1, n
SS), then all variables increase and converge to their

steady-state value: k∗(n) = kC∗(n)→ kSS and n→ nSS, q → qSS and the system
is not subject to run.

4. (Safe Steady-State) If n0 ≥ nSS, then k = kSS and n = n0 forever. It is a
steady-state.

Moreover, all assumptions in 1 hold.

On the equilibrium path, the capital investment jumps at n1 from kSS to kC∗(n1) <
kSS.

Financial accelerator in the safe zone. The financial accelerator describes the
amplification coming from the decrease in intermediation by banks after a shock
that depletes their net worth. There are three main ways the literature relates
banks’ net worth to their lending behavior. Kiyotaki and Moore (1997); Gertler
and Kiyotaki (2015); Mendoza (2010) use a collateral constraint originating in moral
hazard, Brunnermeier and Sannikov (2014); He and Krishnamurthy (2013) assumes a
fixed amount of equity and therefore occasionally binding constraint and Adrian and
Shin (2014); Coimbra and Rey (2017) use Value-at-Risk constraints. My model gives
rise to a fourth one: the willingness of banks to optimally restrict their leverage to
avoid the risk of a run when they are sufficiently capitalized implies the following rule
for leverage:

kC∗(n) = n

q − qR
⇐⇒ qkC∗(n)

n
= 1

1− qR

q

While the multiplier of leverage in Gertler and Kiyotaki (2015) is constant over the
entire state-space, mine depends on the endogenous difference between asset prices
and run prices.
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Around the steady-state, for small enough shocks to net worth, the economy
remains within the safe zone and features a traditional financial accelerator. The
amplification mechanism in this zone comes from the voluntary restrictions on capital
investment by banks who find it more profitable to protect their franchise value from
the risk of a run. But a large adverse shock throws the economy into the run zone
where the relationship between net worth and banks’ investment endogenously breaks
down because banks find it more profitable to keep their leverage high. The endogenous
amplification from the financial sector therefore takes two different forms over time: in
the run zone it comes from the possibility of a run which could further lower output,
in the safe zone it comes from the traditional accelerator effect. The latter only kicks
in with a delay. The model provides a testable explanation for the fact that during
the Great Recession, runs happened between 2007 and 2009 and restriction of lending
happened later, in 2009-2010 (Gorton and Metrick, 2009; Kacperczyk and Schnabl,
2009; Covitz et al., 2013).

Recapitalization channel. Banks operating in more concentrated systems earn
higher profits. One implication is that they can potentially recapitalize more quickly.
Whether they will or not depends on their dividends policy and ultimately on the
specification on the utility function.

In order to get a sense of how the strength of the recapitalization channel depends
on the parameters of the bank’s utility function, I look at the speed of convergence
around the steady-state (given in lemma 4) which is the speed at which capital
approaches its steady-state value. To get more intuition, I consider the special case
where η = 0 for which one has (quasi) analytical solutions. Denoting z̃ = z − ρqR, the
expression for the speed of convergence is given by:

` =
z̃ −

√
z̃2 + 4

γ
(1− kSSqSS1 )

(
K̄2α− θγ (B + 1)

)
α

2 αBK̄
ρ(B+1)

The speed of convergence depends on the number of banks through three channels.
First, increasing the number of banks increases the denominator which slows down
convergence. This is an implication of the price-drop effect: because the drop in asset
prices is larger in more competitive systems, each additional unit of net worth buys
less additional capital in the safe zone. Secondly, increasing B increases the speed of
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convergence through the term kSSqSS1 in the numerator: more competitive banks have
more incentive to accumulate net worth because they don’t move asset prices as much
with their actions. Thirdly, the term θγ (B + 1) reflects the fact that banks in more
concentrated markets make higher profits and, if they do not distribute dividends "too
early", converges more quickly.

The third mechanism is really what drives the recapitalization channel. However,
it depends crucially on the parameters of the utility function. In the case where banks
have linear utility, γ = 0, and a non-negativity constraint on dividends, dividends are
zero until the steady-state is reached and the speed of convergence would vary one for
one with the level of profits and therefore one for one with the level of competition.
When banks want to smooth dividends, γ > 0, whether the recapitalization channel is
strong, weak or negative, depends on θ, which governs how quickly the intertemporal
elasticity (relative risk aversion) increases (decreases) with the level of dividends.
When θ = 0, corresponding to a CRRA utility function, banks distribute dividends in
proportion to their income and the recapitalization channel has no effect on the speed
of convergence in the neighborhood of the steady-state. But in general, the higher θ,
the stronger the negative effect that increasing the number of banks has on the speed
of convergence.

How fast banks distribute dividends as they recapitalize is ultimately an empirical
question. And it is an important question, as the recapitalization channel governs the
speed at which the system escapes the run zone in which banks might experience run
and governs the speed at which the system converges towards the steady-state once in
the safe zone, and therefore the output cost along the path through the safe zone. It
is unfortunately a question that hasn’t received much attention in the empirical (and
theoretical) literature.

Run Price and Entry Channel In this section, I show how the speed of entry
determines the size of the price-drop and thereby influences the stability of the financial
system. The main take-away is the entry channel: increasing the speed of entry of
new banks raise the run-price and stabilizes the system by shortening the run zone.

Let’s first consider the extreme case with immediate entry. The following proposi-
tion shows that when η → +∞, runs don’t happen in equilibrium and banks play the
interior solution without taking any risk of runs.

Proposition 3.2. If η → +∞, then (n1, n
SS)→ (0, 0) and for all n ∈ [0,+∞)
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λ∗(n) = 0 k∗(n) = kSS q∗(n) = qSS d(n) = ρn+ α
(
kI
)2

Intuitively, expectations of very fast entry after a run raise the run price, qR, to
the point that eliminates the possibility of a drop in asset prices and therefore of
runs. Banks always invest at the interior kSS and asset prices remain stable at their
steady-state level. This is a version of contestable markets in which the existence of
potential entrants eliminates the inefficiency caused by a small number of actors. I
am not the first one to notice this effect, see for example Gertler and Kiyotaki (2015).
This theoretical result is consistent with the finding of Beck et al. (2003) and Beck
et al. (2013) that contestability increases stability.

The speed of entry, η, could also be reinterpreted in terms of availability of public
fund for recapitalization of distressed institutions: by standing ready to recapitalize
any institution experiencing a run, the government decreases the likelihood of runs by
raising the run price.

I now discuss heuristically why the idea that faster entry reduces the size of the
run zone is also true for η <∞. Since after a run B banks enter at some arrival rate
η, the run price is given by qR = η

ρ+ηq
∗ (0) + z−αK̄

ρ+η . A first order approximation of the
price-drop at n = 0 is q∗(0)−qR = ρ

ρ+ηq
∗(0)− z−αK̄

ρ+η . Hence a first order approximation
of the corner strategy is n

q∗(n)−qR 'n=0
n

q∗(0)−qR = (ρ+η)n
q∗(0)ρ−(z−αK̄) .

14 As η increases, the
price-drop decreases and the interior investment increases. The required amount of
net worth to make the interior Cournot strategy safe decrease and banks switch all
the more quickly to the safe strategy.15

Concentration and stability: recapitalization and entry channels. In the
first section, I analyzed the price-drop and the franchise value channels. I now highlight
the entry and recapitalization channels. First note that there are two dimensions to
competition: the level of competition as well as the speed of entry of new banks. The
recapitalization channel, like the price-drop and the franchise value channels, refers to
the first dimension while the entry channel refers to the second dimension.

14The derivative of the safe strategy around n = n0 is

∂ n
q(n)−qR

∂n
= 1
q(n0)− qR

(
1− n0qn(n0)

q(n0)− qR

)

15Although q(0) also moves with η, it converges to some finite value z−α K̄
B+1
ρ as η increases.
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Entry channel. I have seen in section 3.2 that the faster the entry of banks after
a run - or the more available public funds for recapitalization of distressed banks -
the smaller the price-drop, the smaller the run zone and the more stable the system.
In the extreme case of immediate entry, the run zone disappears, the system never
experiences runs and banks always invest at their interior optimum because potential
entrants make large drop in asset prices impossible.

Recapitalization channel. A more concentrated system recapitalizes more quickly
because it makes higher profits. It can therefore not only escape the run zone more
quickly making the system more stable but it also converges to the steady-state with
interior investment faster which is good from an efficiency point of view since in the
safe zone output is depressed. The strength - and even the sign - of this channel is
however dependent on the dividends policy of banks and ultimately the parameters
characterizing the banks’ preferences.

Market-power distorsion and entry channel. Finally, as in the static setting, a
welfare analysis should also take into account the efficiency losses implied by the
oligopolistic distortion. A more concentrated system will generate greater output
loss because of its intermediates less capital. Interestingly, the trade-off depends
on the entry channel in the following way. In the extreme case with immediate
entry, since concentration has no effect on stability, a social planner should focus on
increasing competition to reduce the oligopolistic distorsion. When entry happens
slowly, financial stability makes competition less appealing.

4 Numerical Examples

In this section I provide some suggestive numerical examples to illustrate the mecha-
nisms of the model. Given that households have linear utility, a natural measure of
welfare that puts zero weight on bankers, is expected discounted lifetime income. It
turns out that the price of the asset is exactly the expected discounted sum of future
flow of output. A direct corollary is that with zero weight on bankers, the price of the
asset is a sufficient statistics for welfare. The measure of instability is the cumulative
probability of a run, the probability that a run happens by the end of the transition.

Parameter Choices Table 1 lists the parameters values in the benchmark calibra-
tion assigned to ρ, γ, θ, z, λ̄, K̄, α, vR. A period is a year. I set the discount rate, ρ, to
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5%, a standard value in the literature and γ the risk-aversion parameter of bankers
to 0 in absence of clear estimates from the literature. I calibrate α to match a 2%
interest margin. I set the benchmark number of banks to 5 to match a HHI of 2000:
which is on the higher end of the range of HHI reported by Cetorelli et al. (2007), but
consistent with my focus on concentrated markets. Incidentally 5 is also the number
of the largest US investment banks before the crisis, the main broker-dealers of the
US shadow banking (Adrian and Shin, 2010). I set vR to 0 to capture the fact that if
a banker is forced to liquidation and becomes an household, their payoff will be of an
order of magnitude smaller. I set λ̄ to 3% to get a cumulative probability of run at
the beginning of the transition path of 55% consistent with the finding of Valencia
and Laeven (2008).

Parameters ρ γ θ λ̄ α K̄ B vR

Value .05 .5 0 .03 .02 10 5 0

Table 1: Parameters

Increasing Concentration: B

Policy rules. Figure 10 in appendix displays the policy rule for the individual bank
capital investment, the total capital investment of all banks and saving together with
the equilibrium asset price and implied leverage for the set of relevant level of net
worth, for three different degrees of concentration, B = 1, 3, 5. My benchmark is in
black, and the lightest gray corresponds to the monopoly case. The three zones of the
state-space are easiest to see on the capital investment figure, (a). For low levels of
net worth, the optimal capital investment is interior and high, and the bank is taking
on the risk of runs. In this zone leverage is high and decreasing. When n passes the
threshold n1, capital investment optimally and discontinuously drops to a safe level.
For high levels of net worth, the interior investment becomes safe. The optimal saving
policy is to save all profits until the steady-state has been reached. The discontinuity
in the saving policy at the point n1 corresponds to the drop in profits when the system
enters the safe zone.

In this example, the threshold net worth n1 at which the system switches to the
safe zone is similar across different level of concentration. The fact that banks in less
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concentrated systems, despite having a smaller balance sheet, switch at the same level
of net worth as banks in more concentrated systems stems from 1-the price-drop effect
that makes it more costly in terms of net worth for a bank to reach the same level of
capital investment 2-the franchise value effect. These two effects are enough to keep
the net worth similar across degrees of concentration. This obviously has far reaching
consequences for stability along the transition path.
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Figure 5: Transition path as a function of time for B = 1, 3, 5

Transition path. Figure 5 displays the transition path through time of the total
amount of capital intermediated by banks, leverage, saving, asset prices and the
cumulative probability of a run, defined as the probability that a run occurs by the
end of time. Given that the threshold n1 is similar across systems, the length of their
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respective run zone is comparable, hence the amount of time spent in it depends only
on the speed at which banks travel through it, i.e. on the recapitalization effect. which
is determined by their saving and in turn by their profits. A more concentrated system
reaches the safe zone, and then its steady-state, much faster than my benchmark
specification. In this example, looking at 5c and 5e, going from B = 5 to 1 implies a
reduction of the time spent in the crisis by a factor 4 and of the cumulative probability
of a run by a factor 3.

Increasing the Speed of Entry: η To illustrate the effect of the speed of entry,
figure 6 displays the transition path for the total amount of intermediated capital,
asset prices and the cumulative probability of a run for three different values of η.
The black line corresponds the benchmark η = 0, the middle gray to η = .05 and the
lighter gray to η = .1 which corresponds to an average time before entry of 10 years.
To compute the transition path, I assume that the entry level of net worth is nE = 0.

As the speed of entry η increases, the run price, given by

qR = η

ρ+ η
q (0) + z − αK̄

ρ+ η

increases, through a direct effect - the weight on q(0) increases relative to the weight
on z−αK̄

ρ+η but also through an indirect effect coming from a higher q(0), which can be
seen on figure 6b. The latter effect stems from the fact that in general equilibrium the
run zone is smaller, and the convergence to the safe zone and then to the steady-state
occurs more quickly, which raises the q(0). The higher run price, qR implies a smaller
price-drop, which makes bank willing to switch more quickly to the safe investment
strategy, as displayed in figure 6a. The run zone becomes smaller as well as the safe
zone: the system travels faster to the steady-state. Consequently, welfare (figure 6b)
increases with η, and instability (figure 6c) decreases.

Dividends Policy and the Recapitalization Channel: γ In the example shown
so far, I had assumed linear utility (γ = 0) and a non-negative dividend constraint
(d > 0) so that banks didn’t distribute dividends until the marginal utility had reached
ξ. Assuming γ = 0 implies that the recapitalization channel will be very strong because
all profits—which increase with concentration—are being kept for the accumulation
of equity. Allowing for a higher γ tempers the recapitalization channel. Figure 11
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Figure 6: Transition path as a function of time for η = 0, .05, and .1

displays the transition path through time of the total amount of capital intermediated
by banks, leverage, saving, asset prices, dividends and the cumulative probability of a
run, for γ = .1.

Compared to the transition path when γ = 0 displayed in figure 5, it takes much
more time for the economy to escape the run zone, travel through the safe zone and
reach their steady-state because banks distribute dividends and do not save all their
profits along the transition path as can be seen on figure 11e and 11c in appendix.
This affects dis-proportionally systems with higher level of competition. At time 0,
the probability of a run in the system with five banks increases from 50% to 80%
while it remains unchanged for the monopoly, as shown in figure 11f.

A Smooth Functional Form for λ One may wonder how much of the previous
results rely on the assumption that the arrival rate of a run is a step function. I
show in this section that making λ a smooth function of fundamentals doesn’t change
qualitatively the results. The following functional form for the arrival rate proves
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tractable

λ = λ̄

2

(
max

(∑
b

kb −
∑
b nb

(q − qR) , 0
))2

with λ̄ = .002. λ(.) is (weakly) increasing in k with ∂λ
∂k

=
√

2λλ̄ ≥ 0 and decreasing
in n. Figure 12 reports the transition path for three different levels of concentration,
B = 1, 3, 5. The panel showing the probability of a run 12f is not the cumulative
probability of a run but the instantaneous probability of a run (the cumulative
probability isn’t well defined because the lower bound of λ(.) is strictly positive). It
decreases over time because as they accumulate net worth, the franchise value of
banks increases and they find the safe strategy increasingly appealing. The patterns
for dividends, asset prices, saving and leverage are very similar to the previous case
except for investment that doesn’t feature a downward jump at the entrance of the
safe zone.

As can be seen on panel 12f, a more concentrated system will tend to restrict
more its investment and play more safely for low levels of net worth and will exit
more quickly the zone with high risk of runs. Also note that the intuition that more
competitive sector have more incentive to take on risks carries to the long-run as
well: more competitive systems have a higher risk of runs in the steady-state. This
reflects a force that one couldn’t see previously because there was no intensive margin
to risk-taking: when deciding upon how much net worth to accumulate, a monopoly
understands that the marginal dollar reduce the risk of a run by a greater extent than
the marginal dollar accumulated by a bank in a more competitive sector since the the
risk depends on the aggregate amount of net worth. This free-rider problem becomes
more and more acute as the number of banks increases.

Exogenous Risk: the Paradox of Safety I now reintroduce exogenous produc-
tivity uncertainty. I solve the model with two productivity levels. I calibrate z, z̄, ζ
and ζ̄ as follows. I set z̄ = 5 and z = 4.25 for the GDP drop to be of 15% in recession.
I choose the transition rates between productivity states, ζ̄ = .02, ζ = .08 so that the
average time spent in the low state is 12 years and in the high state 50 years. This is
consistent with the size and frequency of large and rare macroeconomic recessions.

Figure 7 displays the stationary distribution of this economy where the x-axis
represents the sum of banks’ net worth for B = 1, 3 and 5 where I keep the same
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color convention as before. The solid (resp. dotted) line represents the distribution in
the high (resp. low) state. The plotted densities are conditional on having effectively
banks operating on financial markets; after a run, the system will operate without
banks for a while.

The fact that the distribution of net worth is shifted to the left in normal and in bad
times suggests that the stabilizing effects of low competition are mitigated by the net
worth accumulation behavior of banks in the medium-run. After a long period without
adverse shocks, banks operating in a concentrated sector do not have as much net
worth on aggregate relative to their assets compared to banks in a more competitive
sector because they understand that the drop in asset prices is also lower, should a run
occur. This makes the system vulnerable to adverse exogenous shocks. This paradox
of safety echoes the paradox of volatility in Brunnermeier and Sannikov (2014) where
low fundamental volatility may actually lead to high endogenous volatility.
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Figure 7: Stationary distributions as a function of net worth for B = 1, 3 and 5

5 Conclusion

This paper has developed a dynamic general equilibrium model with a finite number
of large financial intermediaries subject to endogenous - systemic and idiosyncratic -
run risk and playing à la Cournot, internalizing the effect of their action on aggregate
risk, returns and asset prices. In the neighborhood of the steady-state, they optimally
restrict their investment to be a function of their net worth to avoid the risk of a
run which gives rise to an accelerator effect. For a large adverse shock, the financial
system enters a run zone characterized by high leverage, deleveraging over time and
risk of runs from which it may escape in finite time. The instability of the system is a
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function of how long it stays in this zone. This depends on the level of competition
through three channels: the franchise value channel, the price-drop channel and the
recapitalization channel. I also show that contestability - the speed of entry - has a
significant stabilizing effect, what I call the entry channel.

By highlighting a new general equilibrium channel — the price-drop channel —,
the paper has the following policy implications. First, it brings into question the
idea that more competition among financial intermediaries, in the sense of lower
concentration, is welfare-improving, especially in an environment where intermediaries
are subject to runs and where assets are freely traded, which is exactly the environment
in which the shadow banking system operates. The acuteness of the trade-off between
efficiency and stability depends on other characteristics of the environment: if entry
of new intermediaries after a systemic run is slow or if government steps in quickly
to recapitalize failing intermediaries in case of a run, it eliminates the risk and pro-
competitive policies are always beneficial. Second, it provides support to the idea
that shadow banks should be regulated the same way as banks and enjoy the same
access to the lender of last resort. Indeed, if shadow banks were subject to the
same macro-prudential regulations and were granted the same access to the discount
window or to the deposit insurance scheme as ordinary banks, increasing competition
would always be welfare-improving. Third, in a dual system where banks and shadow
banks co-exist, increasing competition in the regulated sector or toughening capital
requirements may increase the likelihood of runs by changing the degree of competition
or the size of the unregulated sector.

The qualitative findings are consistent with empirical evidence of the dynamics of
the financial system in the aftermath of a adverse shock as well as with the findings of
the effect of concentration on stability. My analysis gives rise to several new testable
predictions and areas for further empirical research. I highlight the limits of empirical
analyses that do not take into account the state-dependency of banks’ behaviors. For
small shocks, banks behavior is characterized by a safe strategy while after a large
shock, runs may occur in the short run and the decline in intermediation happens with
a delay, once the banks have reached the safe zone. I also highlight the importance of
two channels that have been overlooked by the current literature: the recapitalization
channel according to which more concentrated markets have the ability to recapitalize
more quickly and escape the run zone and the price-drop channels according to which
concentration influences the size of the drop in asset prices when a run occur.
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Pricing equation. Denoting the lagrange multiplier on the net worth constraint µ,
substituting for c and cR, and taking the F.O.C. with respect to δb, n and k gives

1
1 + ρ

[(1− λ)(1 + rb) + λψb] = µ

1
1 + ρ

[
(1− λ)(q′ + z − f ′(k)) + λ(qR + z − f ′(k))

]
= µq

µ = 1

which can be rewritten as

qNR − q + z − f ′(kh) = −λ(qR − qNR) + ρq

∀ b ∈ {1, ...,B} rb = λ(1 + rb − ψb) + ρ

Lemma 1 qNR is increasing in B since its last term − K̄
B+1 increases in B. qR is

independent of B. qI is an increasing function of B both directly through its last
term − K̄

B+1 and qNR which I just showed was also increasing.
First I show that the function qC(n) is well defined for every n > 0 and increasing

in n. The LHS of equation (14) is continuous, strictly increasing and linear in
qC . The RHS of equation (14) is also continuous and strictly decreasing in qC for

qC ∈ (qR + Bn/K̄, qNR]. In addition, denoting RHS(qC) =
z+qNR−α2

(
K̄−B n

qC−qR

)2

1+ρ , it
is easy to see that RHS(qR + Bn/K̄) > z+qNR

1+ρ > qNR > qR + Bn/K̄. Hence there
exists a unique qC solution to the equation (14). In addition, since RHS(qC) is strictly
increasing in n, the function qC(n) is also continuous and strictly increasing in n.
Finally, since RHS(qC) is strictly increasing in B both directly through its last term
α
2

(
K̄ −B n

qC(n)−qR
)2

and through qNR, the function qC(n) is also strictly increasing
in B.
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Existence and uniqueness of the thresholds nC1 , n
I
1. I now study the best

responses of an individual bank in a symmetric cournot game for a given level of net
worth n common across all banks. I define four functions: the first one corresponds
to the payoffs of playing safe when all other banks play the safe strategy, the second
one to the payoffs of playing risky when all other banks play the safe strategy (i.e. of
deviating), the third one to the payoffs of playing safe when all other banks play risky,
and the last one of playing risky when all other banks play risky:

SS(n, kC) = u
[
(1 + ρ)n+ α. ∗ (K̄ −B. ∗ kC) ∗ kC

]
RS(n, kC) = (1− λ)γu

(1 + ρ)n+ α. ∗
(
K̄ − (B − 1). ∗ kC

2

)2
SR(n, kC) = u

[
(1 + ρ)n+ α. ∗ (K̄ −B. ∗ kC) ∗

(
BkC − (B − 1)kI

)]
RR(n) = (1− λ)γu

(1 + ρ)n+ α. ∗
(

K̄

B + 1

)2
Now define the net payoff of playing safe when all the other banks play safe and risky
respectively

NS(n, kC) = SS(n, kC)−RS(n, kC)

NR(n, kC) = SR(n, kC)−RR

I also define the following

SSp(kC) = α. ∗ (K̄ −B. ∗ kC) ∗ kC

RSp(kC) = α. ∗
(
K̄ − (B − 1). ∗ kC

2

)2

SRp(kC) = α. ∗ (K̄ −B. ∗ kC) ∗
(
BkC − (B − 1)kI

)
RRp = α. ∗

(
K̄

B + 1

)2

SR(n, kC) is increasing in n on [0,+∞) and in kC on (0, kI ].SR(n, kC(n)) is thus
increasing in n. RR is independent of kC . It is increasing in n. I now show that
NR(n) is increasing in n. It directly stems from the comparison of the derivative of
SR and RR:
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SRn(n, kC)−RRn(n)

= (1 + ρ)u′
[
(1 + ρ)n+ α. ∗ (K̄ −B. ∗ kC) ∗

(
BkC − (B − 1)kI

)]
− (1− λ)γ(1 + ρ)u′

(1 + ρ)n+ α. ∗
(

K̄

B + 1

)2
= (1 + ρ)u′

[
(1 + ρ)n+ α. ∗ (K̄ −B. ∗ kC) ∗

(
BkC − (B − 1)kI

)]

×

1− (1− λ)γ
u′
[
(1 + ρ)n+ α

(
K̄

B+1

)2
]

u′
[
(1 + ρ)n+ α. ∗ (K̄ −B. ∗ kC) ∗ (BkC − (B − 1)kI)

]
︸ ︷︷ ︸

<1



where we used the concavity of u and the fact that (K̄−B.∗kC)∗
(
BkC − (B − 1)kI

)
is bounded above by K̄

B+1 for kC below K̄
B+1 , in the last line. This shows that NR(n, kC)

is increasing in n.
Since NR is increasing in n and in kC and kC is increasing in n, the function

NR(n, kC(n)) is increasing in n.
I now turn to NS. First SS(n, kC) is increasing in n on [0,+∞) and in kC on

(0, kI ].SS(n, kC(n)) is thus increasing in n. RS is decreasing in kC . It is increasing in
n. Hence NR is increasing in kC . I now show it is also increasing in n. Using the exact
same line of argument as before, the concavity of u and the fact that (K̄−B.∗kC)∗kC

is bounded above by
(
K̄−(B−1).∗kC

2

)2
for kC below kI , one can show that NS(n, kC) is

increasing in n.
Since NS is increasing in n and in kC and kC is increasing in n, the function

NS(n, kC(n)) is increasing in n.
In addition, both NS and NR are negative at the lower bound of the interval of n,

NS(0) < 0 and NR(0) < 0. They are both positive at the upper of the interval of n:
it is easy to see that SSp(kI) = RSp(kI) and SRp(kI) = RRp(kI); given that λ > 0,
one directly gets that for the level of net worth such that kC = kI , which I denote
n = nSS, and for kC = kI , one has NS(nSS, kI) > 0 and NR(nSS, kI) > 0.

Finally, given that NS and NR are strictly increasing over the relevant domain
[0, nSS], and are continuous over this domain, there exists a unique pair (nC1 , nI1) ∈
[0, nSS]2 such that NS(nC1 ) = 0 and NR(nI1) = 0.
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Concentration and Risk Channels. I now show that risk increases when B

increases. To do so, I will show that both BnC1 and BnI1 increase with B. I first
look at the case where dq = qC − qR is held constant to isolate the franchise value
channel, I then analyze the impact through the change in qC − qR. One can rewrite
SS,RS, SR,RR as follows:

SS(X, kC) = 1
B1−γ u

[
(1 + ρ)X + α. ∗ (K̄ −Xdq−1) ∗Xdq−1

]

RS(X, kC) = 1
B1−γ (1− λ)γu

(1 + ρ)X + Bα. ∗

K̄ − (B−1)
B

. ∗Xdq−1

2

2


SR(n, kC) = 1
B1−γ u

[
(1 + ρ)X + Bα. ∗ (K̄ −Xdq−1) ∗

(
Xdq−1 − (B − 1)kI

)]
RR(n) = 1

B1−γ (1− λ)γu
(1 + ρ)X + Bα. ∗

(
K̄

B + 1

)2
with X = Bn

Let’s start by showing that X1 = BnC1 should increase when B go up holding

dq constant. One can show that Bα. ∗
(
K̄− (B−1)

B
.∗Xdq−1

2

)2
is increasing in B for

X ∈ [0, dq BK̄
B+1 ]. This is necessary and sufficient for NS to shift down at the point

nC1 (the derivative of NS with respect to 1/B1−γ is zero at the point where NS = 0).
This implies that BnC1 should increase to maintain NS = 0 since NS is increasing in
X for X ∈ [0, dq BK̄

B+1 ].
I now show that X2 = BnI1 should increase when B go up holding dq constant.

The derivative of NR with respect to B holding dq constant is given by

∂NR

∂B
= ∂SR

∂B
− ∂RR

∂B

= 1
B1−γα

(1− λ)γK̄2 B − 1
(B + 1)2u

′

(1 + ρ)X + Bα. ∗
(

K̄

B + 1

)2
−
(
(K̄ −X/dq) ∗

(
(2B − 1)kI −X/dq

))
u′
[
(1 + ρ)X + Bα. ∗ (K̄ −X/dq) ∗

(
X/dq − (B − 1)kI

)] 

Given that u is concave, and B
(

K̄
B+1

)2
> B(K̄−Xdq−1) ∗

(
Xdq−1 − (B − 1)kI

)
, we
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have that

u′

(1 + ρ)X + Bα. ∗
(

K̄

B + 1

)2 < u′
[
(1 + ρ)X + Bα. ∗ (K̄ −Xdq−1) ∗

(
Xdq−1 − (B − 1)kI

)]
.

A sufficient condition for the derivative to be negative is that

(
(K̄ −Xdq−1) ∗

(
(2B − 1)kI −Xdq−1

))
> (1− λ)γK̄2 B − 1

(B + 1)2

⇐⇒ (B + 1−Xdq−1/kI)(2B − 1−Xdq−1/kI) > (1− λ)γ(B − 1)

A sufficient condition for this inequality to hold is that

2B2 − Xdq−1

kI

[
3B − 2− Xdq−1

kI

]
> 0 ⇐⇒

 Xdq−1

B

kI

2

−
Xdq−1

B

kI

[
3− 2

B

]
+ 2 > 0

I then study the polynomial P (x) = x2 −
[
3− 2

B

]
x+ 2. It is decreasing until

[
3− 2

B

]
and then increasing. The point at which the minimum is reached is always higher than
1 3− 2

B
> 1 for B > 1. Since x ∈ [0, 1], we therefore know that P (x) > P (1) = 2

B
> 0

for all x ∈ [0, 1]. Hence the result ∂NR
∂B

< 0. Using again the argument that NR
is increasing in X for a given dq−1, we find that X should increase to maintain
NS(X2) = 0. This ends the proof that BnI1 is increasing in B.

Price-drop effect. I now show that the partial effect of B on Bnk for k = 1, 2
through the drop in asset prices dq amplifies the franchise value effect, i.e. that

∂Bnk
∂dq

∂dq

∂B
> 0 ∀ k = 1, 2

From lemma 1, ∂dq
∂B

> 0. We have shown earlier that ∂NS(n,kC)
∂kC

> 0 and ∂NR(n,kC)
∂kC

> 0
over the relevant range of kC ∈ [0, kI ]. I rely on the same argument here, since kC =
ndq−1, to get that ∂NR(n,kC)

∂dq
< 0 and ∂NS(n,kC)

∂dq
< 0. Hence we obtain ∂NR(n,kC)

∂dq
∂dq
∂B

< 0
and ∂NS(n,kC)

∂dq
∂dq
∂B

< 0. Since NR(n, kC(n)) and NS(n, kC(n)) are increasing in Bn as
shown before, it should be that BnC1 and BnI1 increase to maintain NR = NS = 0.
This ends the proof.
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B Proofs

B.1 F.O.C HH and pricing equations

It is immediate that the first order conditions when the households are risk-neutral
gives the following no-arbitrage conditions q̇ + z − f ′(kh) = −λ∆qR − ζ(z)∆qz + ρq

and ∀b rb = −λ(ψb − 1) + ρ.

B.2 Derivation of the law of motion for a bank’s net worth

After substituting out for deposits using the definition of net worth, one gets:

ṅb = rnb + (q̇ + z − rbq)kb − db

where it appears clearly that the net excess return to an investment of one unit
of capital if no run occurs is q̇ + z − rbq. By the Household F.O.C together with
the market clearing condition for the capital market, and denoting K = ∑B

j kj the
aggregate capital investment of banks, the net excess return is equal to:

R(K) = R

 B∑
j

kj

 = q̇+ z− rbq = f ′

β − B∑
j

kbj

−λb∆qRb +λbq(ψb− 1)− ζ(z)∆qz

which shows how the net return on capital depends on the choice of capital by the
individual banker through the aggregate K. Replacing into the law of motion for net
worth one gets

ṅ = rn+ (q̇ + z − rq) k − d

= (λb + ρ− λbψb)n+
f ′

β − B∑
j

kbj

− λb∆qRb + λbq(ψb − 1)− ζ(z)∆qz
 k − d
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Finally, I use the definition of ψb = qRb kb
δb

= qRb kb
qkb−nb

:

ṅ = (λb + ρ− λbψb)n+
f ′

β − B∑
j

kbj

− λb∆qRb + λbq(ψb − 1)− ζ(z)∆qz
 k − d

= (λb + ρ)n+
f ′

K̄ − B∑
j

kj

− ζ(z)∆qz
 k − d

In the particular case without productivity shock, the law of motion becomes:

ṅ = (λb + ρ)n+
f ′

K̄ − B∑
j

kj

 k − d
B.3 Proof of proposition 2.1 in the dynamic setting

The rule for choosing between the interior vs the corner solution is:

max
λ(k,n)

(
n− v(n,n−b)− vR

vn(n,n−b)

)
+R

(
kI ,k−b

)
kI , R

(
kC(n,k−b,n−b),k−b

)
kC(n,k−b,n−b)


(23)

Definitions of payoffs in equilibrium and deviations I are now ready to check
for deviations. Define P j

i (kC) is the profit of playing j (Interior or Corner) if the
banks are supposed to play i and the corner solution is kC .

kI = K̄

B + 1 kC∗ = n

−∆qR kC = Bn

−∆qR −
∑
j 6=b

kj = BkC∗ −
∑
j 6=b

kj

PC
C (kC∗) = α

(
K̄ −BkC∗

)
kC∗ P I

C(kC∗) = α

(
K̄ − (B − 1) kC∗

2

)2

P I
I (kC∗) = α

(
K̄ − (B − 1) kI

2

)2

PC
I (kC∗) = α

(
K̄ −BkC∗

) (
BkC∗ − (B − 1) kI

)
FI(kC∗) = P I

I (kC∗)− PC
I (kC∗) FC(kC∗) = P I

C(kC∗)− PC
C (kC∗)

where the last two lines define the net payoff from deviating from the interior equilib-
rium and playing the safe one FI , and the net payoff from the deviating from the safe
equilibrium and playing the risky one FC .
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Existence of n1

Lemma 5. 1. The four functions P I
I , P

I
C , P

C
I , P

C
C of kC are parabolas

2. For all kC\{ K̄
B+1}, P

C
C (kC) < P I

C(kC) and PC
I (kC) < P I

I (kC)

3. The functions FI , FC are strictly decreasing for kC∗ ∈ [0, kI ] and strictly increasing
for kC∗ > kI . They are equal to 0 at kC∗ = kI

4. And at kC = K̄
B+1 , P

C
C

(
K̄

B+1

)
= P I

C

(
K̄

B+1

)
and PC

I

(
K̄

B+1

)
= P I

I

(
K̄

B+1

)
5. ∀ kC∗ ∈ [0, kI ] FI(kC∗) > FC(kC∗) with equality for kC∗ = kI .

Proof. All proofs are immediate except the last one.

FC(x)− FI(x) = α
(
K̄ −BkC∗

) (
BkC∗ − (B − 1) kI

)
− α

(
K̄ − (B − 1) kI

2

)2

− α
(
K̄ −BkC∗

)
kC∗ + α

(
K̄ − (B − 1) kC∗

2

)2

= α
(
K̄ −BkC∗

)
(B − 1)(kC∗ − kI) + α

2 (B − 1)(kI − kC∗)
(
K̄ − (B − 1)k

I + kC∗

2

)

= α

2 (B − 1)(kC∗ − kI)
(

2(B + 1)kI − 2BkC∗ − K̄ + (B − 1)k
I + kC∗

2

)

= −α2 (B − 1)(kC∗ − kI)2
(
B + 1 + B − 1

2

)
< 0

I now redefine all functions in terms of net worth. Since I have assumed that kC(n)
was a bijection and increasing in n with first derivatives bounded away from 0, there
exists nI such that kC is increasing over [0, nI ] with kC(0) = 0, kC(nI) = kI . I can
also redefine the function FI(.), FC(.) as functions of n over the interval [0, nI ].

I now prove the existence and uniqueness of the two cutoff points. Define for
k = I, C, P̃C

k (n) = PC
k (n) + F ∗(n). The following is true:

Lemma 6. If vR = 0 and F ∗ is differentiable with (F ∗)′ > 0, there exists a unique
{nI1, nC1 } ∈ [0, nI ] such that

P̃C
C

(
nC1
)

= P I
C

(
nC1
)

and P̃C
I

(
nI1
)

= P I
I

(
nI1
)
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Proof. Furthermore, I also have that v∗(0) ≥ 0 for n ≥ 0, hence F ∗(0) ≥ 0, which
combined with (F ∗)′ > 0 gives F ∗(n) > 0 for n > 0.

Define now HI(n) = FI(n)− F ∗(n) HC(n) = FC(n)− F ∗(n)

Case 1: HI(0) > HC(0) > 0 Gathering all the properties I have established and the
one I just assumed, I have that

1. HI(0) > HC(0) > 0

2. HI(nI) = HC(nI) < 0

3. HI , HC are continuous and strictly decreasing for n ∈ [0, nI ]

4. HI(n) > HC(n) for n ∈ [0, nI)

From the first three properties, there exists a unique pair {nI1, nC1 } ∈ [0, nI ] such that
HI(nI1) = 0 = HC(nC1 ) with nC1 < nI1 where the latter comes from the third property.

Case 1: HI(0) > 0 > HC(0) In this case I conventionally set nC1 = 0.

Case 1: 0 > HI(0) > HC(0) In this case I conventionally set nC1 = nI1 = 0.

Proof of the Corollary I only need to establish that n1 > 0. I show that in
the equilibrium I are constructing, if n1 = 0 then v∗(0) = 0 and that this is is a
contradiction.

For a contradiction assume n1 = 0. Then all banks play safe for n ≥ 0. For n = 0,
the banks cannot invest at all if it plays the safe strategy and its profit will be zero,
forever. Therefore v∗(0) = 0. But v∗(0) implies that HC(0) > 0, and hence that it
optimal to deviate from the safe strategy for 0 net worth. This is a contradiction with
the assumed Cournot equilibrium at n = 0. Hence n1 > 0.

B.4 Dividend policy and steady-state: lemma 2 and 3

When there is no aggregate shock, ζ(z) = 0, assuming the solution for dividends is
interior - and it will be under the CRRA assumption for the instanteneous utility -
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the F.O.C and envelop theorem in the safe zone is

ud(d) = vn(n,n−b)⇒ −γ
ḋ

d
=
vnn(n,n−b)ṅ+∑

j 6=b vnnj(n,n−b)ṅj
vn(n,n−b)

ρvn(n,n−b) = vnn(n,n−b)ṅ+
∑
j 6=b

vnnj(n,n−b)ṅj

+ vn(n,n−b)
(
ρ+ kCn (n,n−b)α

(
K̄ − (B + 1)kC((n,n−b))

))
⇒ 0 =

vnn(n,n−b)ṅ+∑
j 6=b vnnj(n,n−b)ṅj

vn(n,n−b)
+ kCn (n,n−b)α

(
K̄ − (B + 1)kC(n,n−b)

)

where the second line uses the CRRA assumption for utility and the third line
uses the Cournot assumption that a banker takes ṅ−b as given. Combining both gives

γ
ḋ

d
= kCn (n,n−b)α

(
K̄ − (B + 1)kC(n,n−b)

)
(24)

When the capital investment is interior, the solution is different because the
marginal effect of net worth on capital is null:

γ
ḋ

d
= kCn (n,n−b)α

(
K̄ − (B + 1)k

)
= 0

Moreover by continuity of the dividend policy rule, it has to be that d(n) = d(n1)
for n−1 < n < n1 where n−1 = d(n1)−R(kI)kI

ρ+λ̄
is the level of net worth below which distributing the level of dividends d(n1) is no

longer sustainable without making net worth decrease over time. Consequently, below
n−1 - and this applies only if n−1 > 0 -, the only way to keep dividends constant is to
set it such that net worth is constant over time: d(n) = (ρ+ λ̄)n+RIkI

If dividends are set higher, then net worth will decrease and reach 0 in finite time.
If dividends are set lower, net worth will increase and reach n−1 in finite time at which
point dividends would have to discontinuously jump to d(n1) which contradicts the
continuity of the dividends path and the concavity of the utility function.

Steady-state. Setting equation 24 to 0, ḋ = 0 give the steady-state level of capital:
kSS = K̄

B+1 . Using the asset price equation 17 with q̇ = 0 solves for the steady-state
asset price as a function of kSS. Since the steady-state capital investment is also safe,
it has to be that nSS = (qSS − qR)kSS and finally one finds dSS by equating ṅ = 0.

55



B.5 Proof of proposition 3.2

Suppose for a contradiction that with immediate entry, an equilibrium of the type
described in proposition 3.1 with 0 ≤ n1 < +∞ exists. Then ∀ n ∈ [0, n1), λ(n) = λ̄

and k∗(n) = kI

By the assumption that η → +∞, I have that the run price is the price when the
system is at 0 net worth and B banks are operating, i.e. qR = q(0).

For n = 0, I have q(n) = q(0), hence q(n) = qR and n
q(n)−qR is infinitely large and

therefore larger than kI , limn→0+
n

q(n)−qR = +∞ therefore greater than kI

Hence the corner investment n
q(n)−qR is larger than the interior solution kI at 0.

And by continuity it is larger in a neighborhood of zero. Hence the interior investment
doesn’t imply a risk of runs and λ(n) = 0 for n in a neighborhood of 0. This contradicts
the properties of the assumed equilibrium.

Let’s now check that when η → +∞, ∀ n ≥ 0

λ(n) = 0 k∗(n) = kI d(n) = ρn+ α
(
kI
)2

q(n) = z − αkI

ρ

is an equilibrium.
First, I have that q(n)− qR = q(n)− q(0) = 0 hence that n

q(n)−qR is infinitely large
and therefore that kI is always safe. Hence, the optimal capital investment of banks is
always kI . This implies λ(n) = 0. From the optimal conditions for dividends, I have
that ḋ = 0, i.e. that d(n) = ρn + α

(
kI
)2
. Finally, given the optimal investment of

banks k∗(n) = kI and λ(n) = 0, the P.D.E. for asset prices is q̇ = αkI−z+ρq with final
condition q(n) = qSS. This has only one stable solution, which is q(n) = z−αkI

ρ
= qSS

for all n ≥ 0. The proof for the individual bank run case is exactly the same.

B.6 Proof of lemma 4

Global analysis For the first part of lemma 4, I provide a graphical proof. First I
derive a simplified version of the system of differential equations 22 in terms of (d, k, q̃)
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where q̃ = q − qR. From k = n
q−qR = n

q̃
, one gets

k̇ = 1
q̃

(
ṅ− k ˙̃q

)
= 1
q̃

(
ρn+ α

(
K̄ −Bk

)
k − d− k

[
ρq̃ + ρqR − z + α(K̄ −Bk)

])
= 1
q̃

(
k(z − ρqR)− d

)
= 1
q̃

(
kαK̄ − d

)
if η = 0

Then I use the following system

k̇ = 1
q̃

(
k(z − ρqR)− d

)
q̇ = ρq̃ + ρqR − z + α

(
K̄ −Bk

)
γ
ḋ

d
= k1α

(
K̄ − (B + 1)k

)

to draw the associated phase diagram 9 in the (d, k, q̃) plane. The k̇ = 0 locus is
strictly increasing because q̃R < z

ρ
. To gain intuition I first focus on the representation

in the (d, k)-plane in figure 8, fixing q̃ for the time being.

Figure 8: Phase diagram in the (k, d) dimension

The steady-state, the k̇ = ḋ = 0 loci and, importantly, the direction of the arrows
are independent of q̃. The steady-state is the point at which the two lines cross. Under
the assumption that k1 > 0, the saddle path - if it exists - has to feature d and k

moving in the same direction - either both increasing or both decreasing, depending
on where the system starts. Since I will consider cases in which net worth starts below
its steady-state value, k is necessarily lower than its steady-state value, it has to be
that both are increasing over time. Since k is increasing over time until kSS, profits
are increasing over this range of k and d is increasing over time, ṅ has to be increasing
too. This confirms that in equilibrium k1 > 0. Also note that if k1 < 0 then all arrows
in the d-dimension are reversed and no saddle path could exist.
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I now draw the full phase diagram in three dimensions in figure 9. The x-axis
corresponds to capital while the y-axis corresponds to dividends. The third dimension,
the z-axis is for q̃. The q̇ = 0 locus is a fully vertical plane - i.e. orthogonal to the
d-dimension -, from the back-left of the cube to the front right. The ḋ = 0 plane is
coming from the vertical line in the back plane towards us, orthogonal to both the q
and the d-dimension. Finally the k̇ = 0 plane is the ramp starting on the q-axis and
increasing from the bottom left to the top right. Their intersection - the red point -
is the steady-state of the system. I have drawn the same arrows as in the previous
graph and added arrows in the (q, k)-plane to indicate the direction for q.

From the first part of the proof, if a saddle-path exists, it must be to the left of the
ḋ = 0 plane and below the k̇ = 0 plane. Furthermore, the saddle-path must lie in the
zone where all arrows, including those in the q̃ dimension, point towards the steady-
state. I have delimited and colored this zone: the figure with the hatched triangular
basis, the blue triangular faces, the purple triangular back and the transparent roof
has to contain the saddle-path.

Finally the green line lying in the (k, q̃) plane, is the line on which the system
should start, as commanded by the initial condition, k(t0)q̃(t0) = n1. This shows that
q̃ has to be increasing over time along the equilibrium path.

Figure 9: Phase Diagram
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Local determinacy I now prove that the linear approximation of the system 22
around the point (dSS, nSS, qSS) admits one and only one solution satisfying the initial
and terminal conditions. I linearize the following system

ṅ = ρn+ α
(
K̄ −Bk

)
k − d q̇ = ρq̃ + ρqR − z + α

(
K̄ −Bk

)
γ
ḋ

d
= k1α

(
K̄ − (B + 1)k

)
around the steady-state. In matrix form, the system is


ṅ

˙̃q
ḋ

 =


ρ+ α

q̃SS

(
K̄ − 2B nSS

q̃SS

)
− α
q̃SS

nSS

q̃SS

(
K̄ − 2B nSS

q̃SS

)
−1

−α B
q̃SS

ρ+ α B
q̃SS

nSS

q̃SS
0

−(dSS−θγ)k∗
1(nSS)α(B+1)
γq̃SS

(dSS−θγ)k∗
1(nSS)α(B+1)kSS

γq̃SS
0


︸ ︷︷ ︸

A


n̂

ˆ̃q
d̂



where "̂." stands for deviation from their steady-state values (dSS, nSS, qSS). Notice
that in steady-state q∗1(nSS) > 0 as I have proved ealier. Although not needed for the
proof, I provide an explicit expression for it below. Denote the three eigenvalues of A,
l1, l2, l3. From the properties of eigenvalues,

TrA = 2ρ+ α

q̃SS

(
K̄ −BkSS

)
= l1 + l2 + l3

detA = −ρ

(
dSS − θγ

)
k∗1(nSS)(B + 1)α
γq̃SS

= l1 × l2 × l3

Hence one gets the following restrictions on the signs of eigenvalues: l1 + l2 + l3 > 0
and l1 × l2 × l3 < 0. The last inequality implies that either 1 or 3 eigenvalues are
negative. The first inequality implies that at least one eigenvalue is strictly positive.
This establishes that 1 eigenvalue is negative and 2 are positive. Since my system
has two jump variables with a terminal condition and one initial condition for n, this
implies that the system admits one and only one saddle path solution.

Speed of convergence To compute the speed of convergence of capital around the
steady-state, I use the same linearized model but in the (k, d) space.

k̇ = 1
q̃SS

(
k̂(z − ρqR)− d̂

)
ḋ = kSS1 dSSα

γ

(
K̄ − (B + 1)k̂

)
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In matrix form it isk̇
ḋ

 =
 z−ρqR

q̃SS
− 1
q̃SS

−(dSS−θγ)kSS1 α

γ
(B + 1) 0


︸ ︷︷ ︸

A

k̂
d̂



It is easy to check that the system admits one negative and one positive eigenvalue:

TrA = z − ρqR

q̃SS
= `1 + `2 > 0 detA =

−
(
dSS − θγ

)
kSS1 α

γq̃SS
(B + 1) = `1`2 < 0

Denoting `− the negative root - the only that matters for the convergence rate -
one has:

`− =
z − ρqR −

√
(z − ρqR)2 + 4

γ
(1− kSSqSS1 ) (dSS − θγ) (B + 1)α

2 (qSS − qR)

Expression for k∗1(nSS) In this paragraph, I show how to find the solution for
k∗1(nSS). It is not directly needed to establish the previous results, but it shows how
one should use the equilibrium conditions to derive the derivatives of asset prices with
respect to a bank’s own net worth.

From the expression k∗1(n) = 1−kC∗(n)q∗
1(n)

q(n)−qR I see that the challenge is indeed to
compute q∗1(nSS). I start by using the equilibrium condition for the dynamics of asset
prices

q̇(n) = ρq(n)− z + α
(
K̄ −BkC(n)

)
⇒ Bq1(n)ṅ = ρq(n)− z + α

(
K̄ −BkC(n)

)
⇒ q1(n) = q̇(n)

Bṅ(n)

where the second line takes the total derivative of q̇ with respect to the net worth of
every bank and then uses the property of symmetry along the equilibrium path. The
next step consists in using L’Hospital rule to find an expression for this ratio who
takes an indeterminate form in the limit where n→ nSS:

lim
n→nSS

q1(n) = lim
n→nSS

q̇(n)
Bṅ(n) = lim

n→nSS

ρBq1(n)− αB
1−kC∗(n)Bq∗

1(n)
q(n)−qR

B
(
ρ+ 1−kC∗(n)Bq∗

1(n)
q(n)−qR α

(
K̄ − 2BkC∗(n)

)
− dn(n)

)
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The expression for the limit will depend on dn(nSS) the derivative of dividends
with respect to net worth in equilibrium. In a similar fashion, one can use:

lim
n→nSS

dn(n) = lim
n→nSS

ḋ(n)
ṅ(n) =

dSS 1−kC∗(n)q1(n)
q(n)−qR

(
− (B + 1) 1−kC∗(n)q1(n)

q(n)−qR
)

ρ+ 1−kC∗(n)Bq∗
1(n)

q(n)−qR α
(
K̄ − 2BkC∗(n)

)
− dn(n)

These two equations have two unknowns dn(nSS), q1(nss) that can be solved for
numerically. In general, there is no closed-form solution. In the monopoly case B = 1,
one can simplify a little bit the expression. From the first and second equation, one
gets:

q1(nSS) = 1
kI

ρ

ρ+ dn
dn(nSS)(ρ− dn(nSS) = −2dSS

(
1− kIq1(nSS)
q(nSS)− qR

)2

Using the first one to substitute for kIq1 in the second, gives

dn(ρ− dn) = −2dSS
(

dn
(q(nSS)− qR)(ρ+ dn)

)2

(ρ− dn)(ρ+ dn)2

dn
= −2dSS

(
1

q(nSS)− qR

)2

This polynomial of degree 3 in dn has exactly one solution with dn > ρ

Existence and uniqueness of solution to non-linear system It turns out to
be rather difficult to prove existence and even more difficult to show uniqueness of a
solution to the non linear system 22. Using the Cauchy-Peano theorem for existence
and Picard-Lindelöf for uniqueness could give us restrictions such that a local solution
around the steady-state exists and is unique. However, my problem is slightly different
because I have both an initial condition for n and a terminal conditions for the other
variables.

B.7 Proof of proposition 3.1

I start the proof with the middle zone n−1 < n0 < n1.

1. At n−1 < n0 < n1, I know it is optimal to invest at the optimal interior k = kI
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from corollary 1. I need to establish that the bank has strictly positive saving in
the run zone.
I have established in lemma 4 that capital, prices, net worth and dividends were
growing in the safe zone. So this means that the limit of dividends from the right
of n1 is low enough so that the bank is saving. Moreover at n1, it has to be the
case that the limit of profits from the right is stricter smaller that the limit of
profits from the left (there is a discontinuity). Since dividends are continuous at
n1, it has to be that the bank that net worth is accumulating on the left limit
of n1. This establishes only that the property holds locally. It might still be
that n−1 is strictly positive, i.e. n−1 ∈ (0, n1) where I have defined n−1 such that
ρn−1 +RIkI = d(n1). I treat this case in the following bullet point.

2. If n−1 ∈ (0, n1), and n ∈ [0, n−1) then by lemma 3, I know that dividends should
be constant and set such that net worth is constant. Hence, the system is in
steady-state and banks wait for a certain death. Given that saving are strictly
positive and not going to zero as the bank approaches n1, the bank reaches n1 in
finite time.

3. This is an implication of lemma 4.

4. Immediate

I now need to check that the assumptions in 1 hold in the equilibrium I have charac-
terized. The function kC(n) is positive, continuous, strictly increasing as shown in
lemma 4 with a derivative with respect to n bounded away from 0. I need to check
that q − qR is always well-defined for n > 0, and strictly positive. qR is given by
qR = η

ρ+ηq (0) + z−αK̄
ρ+η . I know that in the safe zone, q − qR > 0. I need to establish

the same property in the run zone. Either q is increasing or decreasing in the run
zone. If it is increasing, since

q(n)− qR ≥ q(0)− qR = ρ

ρ+ η
q (0)− z − αK̄

ρ+ η
= ρ

q(0)− (z−αK̄)
ρ

ρ+ η
> 0

where the second line comes from the definition of q(0) and the last line comes from
the fact that (z−αK̄)

ρ
is the smallest price possible, when no banks never operate. If

prices are decreasing in the run zone, then for n ∈ [0, n1], q(n)− qR ≥ q(n1)− qR > 0,
where the second line stems from the property established in lemma 4 as well as the
continuity of prices at n1. Hence −∆qR is well defined and strictly positive.
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I finally establish that the assumptions regarding F ∗ and the value function in
lemma 1 hold. I admit that the value is twice differentiable.

(F ∗)′ =
v∗1(n)∑b v

∗
nb

(n)− (v∗(n)− vR)∑b v
∗
1,nb(n)

(v∗1(n))2 − 1

(F ∗)′ =
v∗1(n)∑j 6=b v

∗
nb

(n)− (v∗(n)− vR)∑b v
∗
1,nb(n)

(v∗1(n))2

From the point of view of a bank, the net worth of another bank increases the value
because it allows to increase the pool of equity the system can rely on. And the returns
of this equity are diminishing at the margin. Hence v∗nb(n) > 0 and v∗1,nb(n) < 0 for
all b. This proves that (F ∗)′ > 0.
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Figure 10: Policy rules and asset price as a function of net worth in benchmark model
for B = 1, 3, 5
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Figure 11: Transition path as a function of time for B = 1, 3, 5
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D A Dual System of Regulated and Shadow Banks

In modern financial systems, most intermediaries benefit from public deposit insurance
schemes and access to the Central Bank discount window, which—if not totally at
least to a large extent—protect them from the risk of a run. In exchange from this
public insurance, they have to abide by capital and liquidity requirements that impose
constraints on the composition of their balance-sheets.

In the past three decades, the landscape of the shadow and traditional banking
sector has experienced significant changes in terms of concentration and regulation.
Firstly since the Great Recession, three of the big five investment banks have disap-
peared: two large investment banks have been absorbed by former competitors—Bear
Stern by JP Morgan Chase and Merril Lynch by Bank of America—and Lehman
Brothers has been liquidated. Secondly, many of the remaining investment banks
converted to traditional bank holding companies in order to benefit from TARP and
are now therefore subject to stricter rules and supervision. Furthermore, the last three
decades have seen a significant movement of concentration in the traditional banking
industry as well as a toughening of capital requirements since the Great Recession.

In this section, I ask three questions. In a world in which only the shadow banking
sector is subject to systemic runs, how does the interactions with the traditional
banking sector modify the previously established results? What are the implications
of stronger regulations and higher level of concentration in the traditional banking
sector for the overall stability of the financial system?

A Model with Regulated and Unregulated Banks I set up a generalized
version of the model in section 3 that includes both an unregulated shadow banking
system subject to systemic runs and a regulated traditional banking system that is
subject to a leverage ratio rule and benefits from the public deposit insurance scheme
or access to the discount window of a lender of last resort. Figure 13 summarizes the
different actors and financial relationships across parts of the financial system with
shadow and regulated banks.

There is a finite number R (resp. S ) of regulated (resp. unregulated) banks. The
total number of institutions is S + R = B. Both types of banks invest in the same
asset.
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Figure 13: Schema of Financial System

Regulated Banks. Regulated banks choose their capital investment, their stream
of dividends and net worth a) subject to a capital requirement constraint 25 and b)
benefiting from deposit insurance either in the form of a federal deposit insurance
scheme or because the depository institution has access to the discount window of the
Lender of Last Resort.

kr = κnr (25)

λr = 1 (26)

for all r = 1...R. I do not specify the capital requirement rule 25 in terms of market
value of asset, but instead adopt a specification more consistent with the Bales III
rules in terms of the book value of the banks’ asset.16 Throughout this paper I will
assume that κ < 1

−∆qR so that if a run occurs, the net worth of regulated banks always
remains positive. The relevant aggregate state variables of the economy are the vectors
of net worth of regulated and unregulated banks, productivity and the number of each
type of financial intermediaries. Because in equilibrium, R will remain fixed over time,

16Basel Committee on Banking Supervision, "Basel III leverage ratio framework and disclosure
requirements"
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I omit it when no confusion results. The problem of a regulated bank is:
Taking k−r,ks, ṅ−r, ṅs as given, a regulated bank r HJB equation is:

ρv(n,n−r,ns,S ) = max
d,k

u(d) + vn ((q̇ + z)k − rδ − d) +
R∑
j 6=r

vnj ṅj +
S∑
s

vnsṅs

+ λ(v(n+ ∆qRk,n−r + ∆qRk−r, 0, 0))− v(n,n−r,ns,S ))

s.t. kr = κnr

Shadow banks. Shadow banks solve the same problem as before but now taking
also the investment of regulated banks as given. Taking k−s,kr, ṅ−s, ṅr as given, a
shadow bank s HJB equation is:

ρv(n,n−s,nr,S ) = max
d,k

u(d) + vn ((q̇ + z)k − rδ − d)

+
S∑
j 6=s

vnj ṅj +
R∑
r

vnr ṅr + λ(vR − v(n,n−b,nr,S ))

Market clearing. The goods, deposits and capital markets must clear. By Walras
law, it is sufficient that the deposit and capital markets clear. The market clearing
condition for deposits is the same as previously. The market clearing for capital is:

S∑
s=1

ks +
R∑
r=1

kr +
∫
khdh = K̄ (27)

Entry and run price. Given the results I have established earlier, I will focus here
on the case with no entry—corresponding to η = 0—where after a run on the shadow
banking system, the system stays forever after only populated by regulated banks.

S ′ = 0 (28)

R ′ = R (29)

Finally, the run price should be consistent with the post-run macroeconomic
condition:

qR(ns,nr,S ) = q(0,nr + ∆qRk(nr), 0)

where q(0,nr + ∆qRk(nr), 0) denotes the price of the asset when no shadow banks
is operating, all the capital stock is held by regulated banks and households and when
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no shadow banks may enter consistently with 28.

Symmetric Equilibrium and Transition Dynamics I assume symmetry among
regulated banks on the one hand and among shadow banks on the other, but allow
for asymmetry between the two groups.

Run game. During the second stage of an instant, depositors might run. The
condition for a run on the shadow banking sector is

NS + ∆qRKS < 0 (30)

where NS = S ns and KS = S ks. The condition is independent of the regulated
banks’ net worth and capital investment because regulated banks’ deposits are insured
and they cannot transfer liquidity to the shadow banking system in times of run
because their leverage constraint is already binding. No pooling of liquidity is possible
between the two parts of the financial system.17

Behavior of regulated and shadow banks. Investment by regulated banks is
strictly tied to their net worth given by 25, so that aggregate investment by regulated
banks is

KR = κNR = κRnR

They accumulate net worth until they reach the optimal Cournot interior:

kSS = K̄

S + R + 1

The behavior of shadow banks is the same as the one described in the equilibrium
without regulated banks where K̄ should be replaced by

K̃(nR) = K̄ −R min
(
κnR , k

SS
)

17The following condition
NS +NR + ∆qR (KS +KR) < 0

would entail more than mere pooling of liquidity, and would require pooling of equity and would
mean that when a run hits, the entire shadow banking system is acquired by the regulated sector.
Although I focus on the case described in 30, the failure of Lehman Brothers and the acquisition of
Bear Sterns and Merrill Lynch by JP Morgan and Bank of America respectively suggests that there
was partial pooling of equity during the Great Recession and that I are looking at an extreme case.
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Competition Policies in the Regulated Sector To illustrate the impact of
increasing the degree of competition in the shadow and in the regulated banking
sector, I do two counterfactuals. In the first one, I decrease the number of regulated
banks from 3 to 2, keeping the number of shadow banks to 2. In the second, I keep
the former at 3 but decrease the number of shadow banks to 1. Figure 14 plots the
transition path of an economy unexpectedly hit by a shock that brings the net worth
of shadow banks to 0. The transition path in the original economy is depicted in black,
the first counterfactual in dark gray and the second in light gray. On (a) and (b), the
solid line (dashed line) represents shadow banks (regulated banks). On (c), the solid
line (dashed line) represents the asset price (run price).

The decrease in competition in the regulated sector has a slight stabilizing effect
in my example by increasing profits of shadow banks. The franchise value channel
and the recapitalization channels indeed favor less risk-taking and a faster travel
speed through the crisis zone thanks to higher profits as may be seen on (b). But the
price-drop effect severely dampens their impact: less regulated banks implied that the
drop in prices is more severe after a run on the entire shadow banking system as may
be seen on (c). This contributes to making the crisis zone larger. This larger drop is
not only caused by the market power channel according to which less banks implies
lower output and lower asset prices but also caused by the large drop in regulated
banks’ net worth caused by their relatively larger exposure.

Decreasing the number of shadow banks and keeping the number of regulated
banks constant—(R,S ) = (3, 1)—has the already-described stabilizing effect through
the franchise value channel, the recapitalization channel and the price-drop channel.

Macroprudential Policies in the Regulated Sector To illustrate the impact of
making regulation tighter for regulated banks, I simulate the transition path of two
economies, κ = 1 and κ = .25, unexpectedly hit by a shock that brings the net worth
of shadow banks to 0. Because regulated banks are better capitalized, their starting
level of net worth on the transition path is strictly positive. The black lines represent
the benchmark case κ = 1.

In my example, a more tightly regulated banking sector implies a more stable
overall financial system. The main reason is that regulated banks are better capitalized.
Should a run occur and the shadow banks disappear, capital investment by financial
intermediaries would drop by less. This maintains a higher run-price when κ = .25 as
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Figure 14: Transition path as a function ot time for (R,B) = (3, 2), (2, 2), (3, 1)

may be seen on (c).
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Figure 15: Transition path as a function ot time for κ = 1 and .25

I now do the same experiment but assuming that before the unexpected shock hit
both economy were at the steady-state where the regulated sector was subject to the
same capital requirement, κ = .25. After the shock hits, one economy experiences a
tightening of its capital requirement to κ = 1. This counterfactual is closer to what
happened in the aftermath of the Great Recession.
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Interestingly, the more tightly regulated system is characterized by a higher
probability of a run. The effect described previously doesn’t apply anymore because
both economies start from the same point in the state-space after the productivity
shock hits. There are two key mechanisms. The larger price-drop in the more tightly
regulated system stems from the fact that it takes much longer for the regulated
banking system to recapitalize which depresses asset price should they be the only ones
left to intermediate funds. This makes the run zone with the more tightly regulated
system larger. The recapitalization channel dampens this first effects: from the point
of view of shadow banks, stricter capital requirements for regulated banks means less
competition and therefore higher profits, higher savings and quicker recovery along
the transition path. In this example, the first effect dominates.
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Figure 16: Transition path as a function ot time for κ = 1, .25 and common starting
net worth
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